

08.67 Compression test apparatus 08.68 Shear strength test apparatus

Operating instructions

All it takes for environmental research

P.O. Box 4, 6987 ZG Giesbeek, The Netherlands © May 2013 T+31 313 88 02 00F+31 313 88 02 99

E info@eijkelkamp.comI www.eijkelkamp.com

1 About these operating instructions

If the text follows a mark (as shown on the left), this means that an important instruction follows.

If the text follows a mark (as shown on the left), this means that an important warning follows relating to danger to the user or damage to the apparatus. The user is always responsible for its own personal protection.

Text Italic indicated text indicates that the text concerned appears in writing on the display or must be typed.

1.1 General safety precautions

- Read and understand these entire instructions before proceeding.
 - This apparatus is for soil research applications and has to be operated by qualified operators only.
 - A qualified operator is well trained, mental and physical fit to operate complex multiple instruments.
 - Take care for personal hygiene and environmental precautions in case operating contaminated samples.
 - The apparatus operates with severe test forces, be sure to follow the safety instructions at all times to prevent injuries.
 - Do not operate with damaged cord, wires, hoses or any other parts.
 - Do not operate at any voltage or frequency other than 120- 240 VAC, 50- 60 Hz.
 - Disconnect apparatus from electrical and airpressure supply before installation, or servicing.
 - Do not expose apparatus to rain, or use in wet locations it is rated for indoor lab locations only.
 - Servicing should be performed by QUALIFIED PERSONNEL ONLY!
 - Do not operate with removed enclosure panels or disabled safety precautions.
 - Only original replacement parts supplied by Eijkelkamp are allowed to service.

Please be aware of the instrument safety precautions to prevent human danger or instrument damage, do not change, manipulate or operate the instrument in any possible harmful way.

In case of problems press the EMERGENCY/STOP button.

The button will be locked and a save situation is secured. To recover turn the button clockwise to unclock and press the yellow button to continue.

- Eijkelkamp explicit informs you that product training is highly recommended and this operating instructions are only for indicational purpose.
- The instructions and specifications can be changed without notice and no rights whatever can be claimed.

1.2 Index

1	About	these operating instructions	
	1.1	General safety precautions	2
	1.2	Index	3
2	Produ	ct Description's	4
	2.1	Technical specifications	
	2.2	Schematic construction Compression test apparatus	7
	2.3 Sc	hematic construction Shear test apparatus	8
3	Installa	ation	9
	3.1	Requirements for installation	9
	3.2	Environment	
	3.3	Preparation (unpacking, etc.)	9
	3.4	Partlist 08.67	10
	3.5	Partlist 08.68	11
	3.6	Transport	12
	3.7	Placement of the apparatus	12
	3.8	Mounting the air pressure regulator	
	3.9	Connecting the air pressure	12
	3.10	Connecting the apparatus to the computer	14
	3.11	Connecting the Power supply and switch on.	
	3.12	Installing the software	15
	3.13	Tensiometer	16
	3.13.1	Tensiometer assembly filling	
	3.13.2	Tensiometer installation	17
	3.13.3	Tensiometer calibration	20
	3.14	Checking and zeroing the instrument	21
4	Soil sa	mples	22
	4.1	Field sampling	22
	4.2	Lab sample preparation	
5	Softwa	re functions	24
	5.1	Measurement protocols	31
	5.2	Program steps for the Compression apparatus	33
	5.3	Program steps for the dynamic load Compression apparatus	
	5.4	Example Shear protocol	36
	5.5	Program steps for the Shear apparatus	
	5.6	Program steps for the dynamic load Shear apparatus	
6	Measu	ring procedure compression test	40
7		ring procedure Shear test	
A	ppendix 1	Theory of operation soil compaction	48
		ns:	
		ments of Soil Strength	
		ength parameters	
		on of data:	
	Literatur	2	
A	ppendix 2		
		solving, tips and tricks	
	Calibratio	on Maintenance and Service	56
	Service in	nterval schema	
A	ppendix 3		
	-	system files	
		configuration files	
		data files	
		format	
	ppendix 4		
А	ppendix 5	CE declaration of conformity	62

2 Product descriptions

08.67 Compression apparatus for measuring soil compression and simultaneous measuring of soil suction with tensiometer

- Sample diameter 100 mm
- Sample height 30 mm
- Complete instrument inclusive software to configure, calibrate and read-out the instrument
- Simultaneously operation of up to 8 instruments

The 'Compression test apparatus measures the compression of an undisturbed round soil sample. During the measurement(s) the soil water matrix, compression stress and settlement are measured.

This equipment measures the soil consolidation in accordance to NEN 5118, EN17892-5 and ASTM D698 - 07e1 considering the following restrictions:

- The maximum specimen load is 600 kPa for a 100 mm sample ring
- Tests are conducted in non water immersed condition
- Please consult instrument specification for detailed information in case of accreditation

Global method (steps) of measurement:

- Placement of the soil-sample (ring) into the device
- The soil sample is exposed to a vertical pressure/load. The pressure step(s) depend(s) on the structure of the sample.
- The installation is accommodated with a linear measuring apparatus; tensiometer; load cell; etc.
 - The displacement sensor measures the compaction/compression of the soil sample.
 - The ground-water pressure (soil moisture tension) in the soil sample is measured by a tensiometer.
 - The load cell registers the pressure/load and gives feedback to the DAQ (Data Acquisition Device) device and regulator to control the load accurately.
- During the exposed load, the sample is compressed and all sensors are measured at predefined Log-intervals.
- The test indicates the difference in compression of samples with different soil-densities (saturated/unsaturated soil-samples and disturbed/undisturbed soil-samples).
- The measurement results are stored and presented both numerical and graphical by the software

08.68 Shear strength apparatus for measuring soil shear strength under compression and simultaneous measuring of soil suction with tensiometer

- Sample diameter 100 mm
- Sample height 30 mm
- Complete instrument inclusive software to configure, calibrate and read-out the instrument
- Simultaneously operation of up to 8 instruments

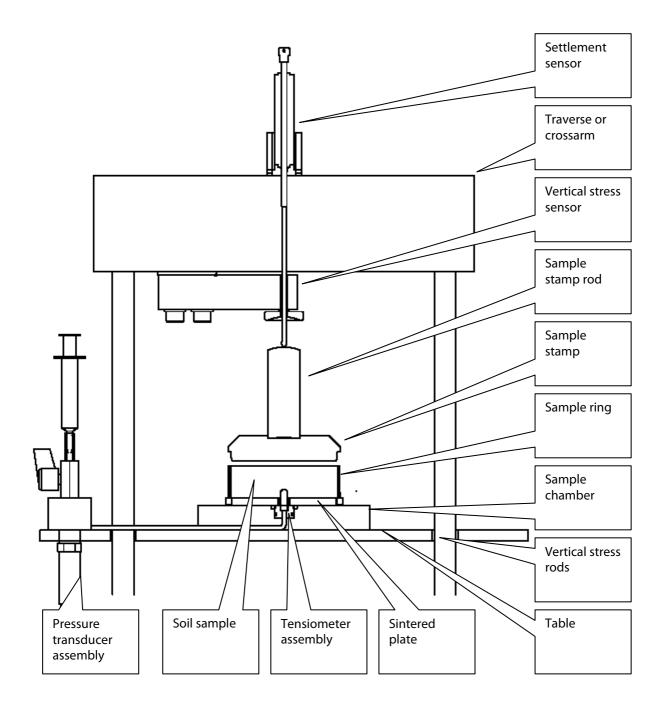
The 'Shear test apparatus measures the shear stress of an undisturbed round soil sample. During the measurement(s) the soilwatermatrix, compression stress and settlement are measured.

This equipment measures the soil shear stress in accordance to EN17892-10 and ASTM D3080-98 considering the following restrictions:

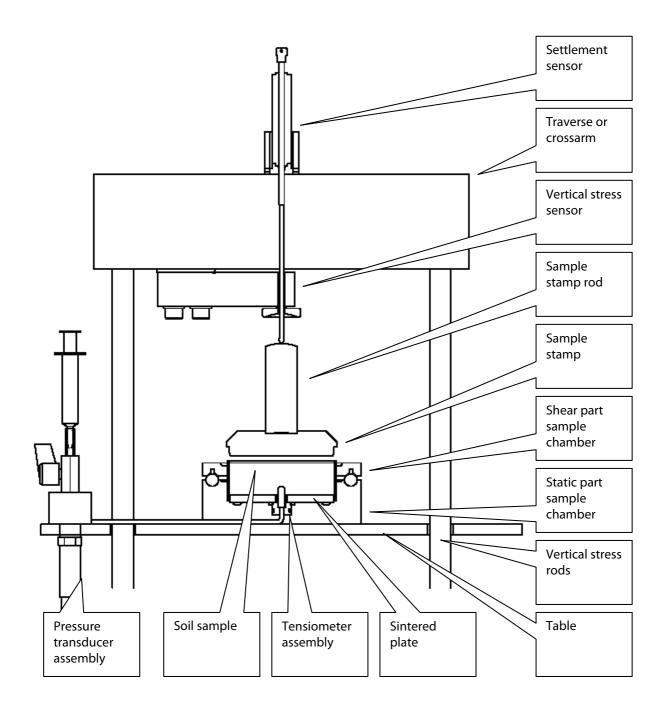
- The maximum specimen load is 600kPa for a 100mm sample ring
- Tests are conducted in non water immersed condition
- Please consult instrument specification for detailed information in case of accreditation

Global method (steps) of measurement:

- Placement of the soil-sample (ring) into the device (soil sample-holder).
- The soil sample is exposed to a vertical pressure/load. The pressure step(s) depend(s) on the structure of the sample.
- The installation is accommodated with a linear measuring apparatus; tensiometer; load cell; etc.
 - The displacement sensor measures the compaction/compression of the soil sample.
 - The ground-water pressure (soil moisture tension) in the soil sample is measured by a tensiometer.


- The load cell registers the pressure/load and gives feedback to the DAQ (Data Acquisition Device) device and regulator to control the load accurately.
- The shear-displacement has a user defined constant speed
- During the exposed load, the sample is sheared and the shear force is measured at predefined Log-intervals.
- The test indicates the difference in shear force of samples with different soil-densities (saturated/unsaturated soil-samples and disturbed/undisturbed soil-samples).
- The measurement results are stored and presented both numerical and graphical by the software

2.1 Technical specifications


ltem	Range	Resolution	Accuracy
Vertical stress	0-600 kPa	0.1 kPa	2 kPa
Response speed	<10 sec. @1% endv	alue (adaptable b	y PID controller parameters)
Horizontal stress * Shear speed* Shear stroke *	0-400 kPa 0-2 mm/min 20 mm	0.1 kPa 0.01 mm/min	2 kPa 0.1 mm/min
Soil moisture Compression	-1000 +1000hPa 0-30mm	0.1 hPa 0.001 mm	2 hPa 0.1mm
Sample log rate	0.160 sec.		
Pressure in max Force max Stress out max	0.7 Mpa / 7 bar 5 kN 600 kPa		
Adapter input Mains supply Mains frequency Power consumption Adapter output Supply voltage Max current	100-250 Vac 47-63 Hz n 0.8 W 30 Vdc 1.2 A max		
Environmental con Ambient Temperature Humidity	ditions For indoor use only 15-35 ^º C 20-80% RH (non co		
Dimensions Weight 08.67 Weight 08.68 Software language PC connection PC operating system	USB m		
	Simultaneously.	performance rat	ights) ing 5* or higher will operate up to 8 instruments ta thinks of it is to browse to Control Panel -> System and Maintenance -

>Performance Rating and Tools.

2.2 Schematic construction Compression test apparatus

2.3 Schematic construction Shear test apparatus

3 Installation

3.1 Requirements for installation

- Compressed-air: clean, stable (without drops/ impact), dry air must be available in the operating range of 6-7bar. Pressure regulator can be exposed to a maximum operating pressure of 1 MPa= 10 bar (set-pressure= 0.05-0.85 MPa).
- Connection plug and tube clamp to connect the delivered compressed-air tube (D=14x8 mm) to your compressor system.
- Mains supply near instrument: for connection of the adapter (Shear Strength Test Apparatus) and the connection of the PC/laptop.
- Up to date PC/laptop; a clean system with only the operating software and probably office software. PC operating systems: XP, Vista, Windows7 (administrator rights).
 PC performanceVista processor system performance rating 5* or higher will operate up to 8 instruments simultaneously.
 View the rate in Vista: browse to Control Panel -> System and Maintenance ->Performance Rating and Tools.
 Optional virus protection and internet access are preferred.
- Water, distilled or deionised, well degassed (-950 hPa); and the equipment to make this.
- Sample-rings d 103x100 h 30 mm).

3.2 Environment

Make sure that you place the apparatus in a clean, dry and non direct sunlight surrounding (a conditioned room is preferred) for best operational performance and measurement results.

The apparatus should be well accessible from the operating front and left side to connect/ adjust the compressed air (accessible for maintenance; remove condensate). In case of multiple instruments they can be placed best side by side with the computer in the middle. Adjust the table surface height and levelness with a level by turning the footrests.

3.3 Preparation (unpacking, etc.)

Remove all packaging materials, check for completeness and damages and report irregularities directly to your supplier.

3.4 Partlist 08.67

Compression test apparatus

08.67	Soil compression test apparatus for measuring soil compression and (simultaneous) soil moisture tension with tensiometer on undisturbed Sample diam. 100 mm. Complete instrument
08.67.01	Compression test apparatus. Basic instrument in frame Complete with sample chamber, settlement sensor, pressure transducer and tensiometer assembly. Excl. Software
08.68.12	2 Sintered plate with hole
08.68.13	2 Sintered plate without hole
H7.00.59.5	Sample compression rod
H7.00.57.9	Sample compression stamp
08.67.10	Tensiometer assembly for shear test and compression test apparatus.
H2.79.80.0	Tensiometer filling set:
	4x Syringe 10 ml
	2x Filling tube with syringe tip
H7.00.59.0	Tensiometer container reservoir
H2.79.80.4	Gouge auger tool
H2.63.54.2	Euro Mains cable 2.5 m
H2.63.54.0	Mains adapter 100-250Vac 30V 1.2 A
H2.63.54.6	USB 2.0 screened cable
H1.04.51.0	Air supply hose with coupling for instrument only
	Mounting toolset consisting of:
H3.09.10.3	Tensiometer tool
99.75.06	Socket head wrench
99.50.14	Spanner 13x14
99.50.18	Spanner 18x19
H2.45.91.5	Round spirit level
H2.76.95.2	2x carrying rod
08.68.30	Basic (multifunctional) software for executing measurement protocols and visualised data presentation, english
08.67.32	Licence for compression test software for static multistep operation of instrument tests
Optional items:	
08.68.20	USB HUB 4 port, incl. power supply connector UK-EC
08.67.34	Licence for compression test software for dynamic multistep operation of instrument tests
08.68.90	Calibration test set for shear test and compression test apparatus, consisting of calibrated

sensors, calibration certificates, calibration blocks and spare parts. In case.

3.5 Partlist 08.68

Shear strength test apparatus

Art. no.:	Description
08.68	Shear strength test apparatus for measuring soil shear strength under compression,
	with (simultaneous) measuring of soil tension with tensio- meter on undisturbed
	sample. Sample diam. 100 mm. Complete instrument.
08.68.01	Shear strength test apparatus. Basic instrument in frame. Complete with sample chamber
	settlement sensor, transducer and tensiometer pressure assembly. Excl. software.
08.68. 12	2 Sintered plate with hole
08.68.13	2 Sintered plate without hole
H7.00.59.5	Sample compression rod
H7.00.57.9	Sample compression stamp
08.68.10	Tensiometer assembly for shear test and compression test apparatus.
H2.79.80.0	Tensiometer filling set:
	4x Syringe 10 ml
	2x Filling tube with syringe tip
H2.79.80.2	Tensiometer container reservoir
H2.79.80.4	Gouge auger tool
H2.63.54.2	Euro Mains cable 2.5 m
H2.63.54.0	Mains adapter 100-250 Vac 30 V 1.2 A
H2.63.54.6	USB 2.0 screened cable
H1.04.51.0	Air supply hose with coupling for instrument only
	Mounting toolset consisting of:
H3.09.10.3	Tensiometer tool
99.75.06	Socket head wrench
99.50.14	Spanner 13x14
99.50.18	Spanner 18x19
H2.45.91.5	Round spirit level
H7.00.67.5	Compression adapter ring
H7.00.58.4	Sample holder upper plate
H2.76.93.8	Sample holder fill plate
H7.00.67.1	Sample holder lower ring
H7.00.68.4	Sample Transfer rod
H7.00.60.4	Sample transfer stamp
H7.00.67.2	Sample transfer ring
H7.00.58.7	6 fixation pin red
H2.76.95.2	2x carrying rod
08.68.30	Basic (multifunctional) software for executing measurement protocols and visualised data
	presentation, english
08.68.32	Licence shear test software for static multistep operation of instrument tests
Optional items:	
08.68.20	USB HUB 4 port, incl. power supply connector UK-EC
08.68.34	License for shear test software for dynamic multistep operation of instrument tests

08.68.34License for shear test software for dynamic multistep operation of instrument tests08.68.90Calibration test set for shear test and compression test apparatus, consisting of calibrated
sensors, calibration certificates, calibration blocks and spare parts. In case.

3.6 Transport

Carefully transport and place the apparatus, although you are probably impatient to start, please take your time and precautions to prevent damage.

For easy moving and transporting the transport bars can be attached.

Remove the transport facilities after transport and place the black plastic profile strips.

3.7 Placement of the apparatus

Make sure that you place the apparatus in a clean, dry and not exposed to direct sunlight surrounding for best operational performance and measurement results. The apparatus should be well accessible from the operating front and in case of multiple instruments they can be placed best side by side with the computer in the middle. Adjust the table surface height and levelness with a level by turning the footrests.

3.8 Mounting the air pressure regulator

Mount the regulator to the frame and connect the black hose to the blue self locking coupling by pressing the hose firmly in and pull to test the fixation.

3.9 Connecting the air pressure

Clean, dry and stable pressured air is prescribed in the operating range of 6-7.5 bar. A pressure regulator on the instrument will restrict the pressure to the needed operating pressure of ca 7.0 bar for maximum stress load of 600 kPa or 5.599 bar for loads up to 400 kPa. Higher pressure than 7.0 bar will invoke the internal overpressure valve to operate. A stable air pressure supply is

Connect the supplied pressure hose fitted well to your pressure system and connect to the apparatus with the supplied Euro type safety connection. To connect the air supply, firmly push the self locking coupling on the connection.

The release of the air supply coupling is done in 2 steps , pullback the black ring, the air pressure then will be released and then pull further to disconnect.

Make sure that the hoses are qualified for the pressure, fitted well and are undamaged.

Do not use air pressure below the minimum needed value to prevent wear out of the internal pressure controller.

The instrument pressure is adjusted by pulling the black knob. Turning it <u>clockwise will increase</u> the pressure, turning <u>contra clockwise decreases</u> the pressure. Push the knob down in the locked position after adjustment.

Do not exceed the maximum air pressure to prevent damage to human and apparatus. A loud noise may accompany the release of overpressure.

Lower pressure will limit the maximum applicable stress. If despite a maximum stress is programmed then the electronic air pressure controller will try to accomplish the requested value with intensive action that will reduce the lifetime of this component.

/!\

If the main supplied air-pressure is too low and the Stress settings for the apparatus are higher than can be reached at this air-pressure, the pressure regulator will make a humming noise. This should be avoided as it shortens the lifetime of this part.

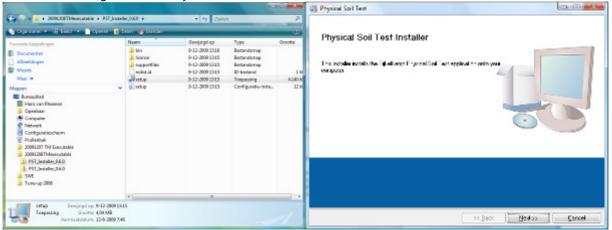
If the apparatus is not in use for longer time please disconnect the air pressure.

3.10 Connecting the apparatus to the computer

Connect the USB connector to your computer. Using up to 4 apparatus use the USB hub, for up to 8 apparatus use 2 USB hubs needing 2 USB ports on your computer. The USB hubs are powered by their own mains power.

3.11 Connecting the Power supply and switch on.

Check the correct mains specifications and pug type before connecting the mains cord of the power supply to the wallet. Connect the 30 Volt output plug into the socket at the back of the instrument. The instrument can be switched on by the illuminated front push button equipped with a protective cap. The white ON indicator lamp will light up when the power is connected and the instrument is switched on. If the apparatus is not in use for longer time please disconnect the mains plug from the wallet.



Optionally, o prevent electrostatic voltages build-up introduced into the metal frame, the instrument can be connected to a protective earth terminal.

3.12 Installing the software

The software can be downloaded from the Eijkelkamp internet site; in this way you are assured to use the latest software version. For download details contact your supplier. Alternatively a CD will be supplied. After downloading the software you run SETUP.

During installation the following menus will appear.

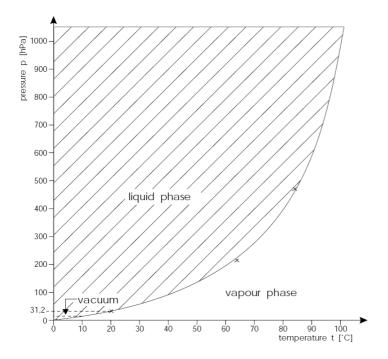
1 Physical Soil Test	Physical Soil Test
Destination Directory Telectifie primay installation directory	License Agreement You must accept the license(s) displayed below to proceed.
Al «Chuses velice installed in the following locationis). To install obtains into a different location(a), clade the Braveou build handled an action and the distance Directory for Physical Soil Test CAProgram Rise/Ejikelkamp/Physical Soil Test.	NATIONAL INSTRUMENTS SOF TWARE LICENSE AGREEMENT INSTALLATION NOTICE: THIS IS A CONTRACT. BEFORE YOU DOWNLOAD THE SOFTWARE AND/OR COMPLETE THE INSTALLATION PROCESS, CAREFULLY READ THIS AGREEMENT. BY DOWNLOADING THE SOFTWARE AND/OR CLICKING THE APPLICABLE BUTTON TO COMPLETE THE INSTALLATION PROCESS, YOU CONSENT TO THE TERMS OF THIS AGREEMENT AND YOU AGREE TO BE BOUND BY THIS AGREEMENT. IF YOU DO NOT WISH TO BECOME A PARTY TO THIS AGREEMENT AND BE BOUND BY THIS AGREEMENT. IF YOU DO NOT WISH TO BECOME A PARTY TO THIS AGREEMENT AND BE BOUND BY THIS AGREEMENT IN YOU DO NOT WISH TO BECOME A PARTY TO THIS AGREEMENT AND BE DOUND BY ALL OF ITS TERMS AND CONDITIONS. CLICK THE APPROPRIATE BUTTON TO CANCEL THE INSTALLATION PROCESS, DO NOT INSTALL OR USE THE SOFTWARE, AND RETURN THE SOFTWARE WITHIN THIRTY (30) DAYS OF RECEIPT OF THE SOFTWARE (INCLUDING ALL ACCOMPANYING WRITTEN MATERIALS, ALONG WITH THEIR CONTAINERS) TO THE PLACE YOU DBTAINED THEM. ALL RETURNS SHALL BE SUBJECT TO NIS THEN CURRENT RETURN POLICY.
D rectory for K-all chell indu-visiologicades COProgram Rect/National Instruments) Browsex	Definitions. As used in this Agreement, the following terms have the following meanings:
Keack Mod >>> Concel	Cancel

As the NI labview platform is used for software and hardware development you need to accept the license agreement, there are no costs or obligations involved.

After installing the main software the specific instrument files can be downloaded and installed by invoking the command "install"

Tel D	D/WR	WHITE THE PA	10-099 10 91 74				liste	10
Ind II county preside DeviCate & Texe additional information percenting	Cros 13	Ting (to new au)	Applet Sheek	live Anglosophie	Solar and market in	Competition [res]		
Gast Ing Add Encount								_
Applied Short In Notice Short		(ol-sta		Com	quetton 不	Per	SHEE	-40 -41
500 400 100							400	**
300							30	8
300								
1								-10
100 million 100 mi								4

After installation the program main screen will be showed and the connected instruments are recognised in the lower apparatus selection bar. The specific instrument liscence and configuration files are supplied separately.

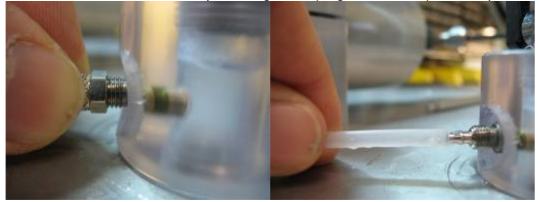

3.13 Tensiometer

The tensiometer measures the soilwatermatrix or soilwatertension inside the soil sample. The soilwatermatrix is the suction pressure of the water bounded to the soil. It is expressed in expressed in hecta Pascal (hPa). The tensiometer ceramic cup is placed in the middle of the sample chamber. It is connected by a hose tot the pressure sensor that measures the soilwatermatrix both positive as negative.

The ceramic cup assembly of the tensiometer is vulnerable so do not stress it mechanically and prevent it to get greased i.e. by touching it with bare hands. Wear out ceramic cups are performing slow moisture pressure response. It is advised to check and replace it regularly.

3.13.1 Tensiometer assembly filling

Tensiometers should be filled with demineralised or distilled water. This water must be degassed. The tensiometer water limits the measuring range, as can be seen from the two-phase diagram for water and water vapour.

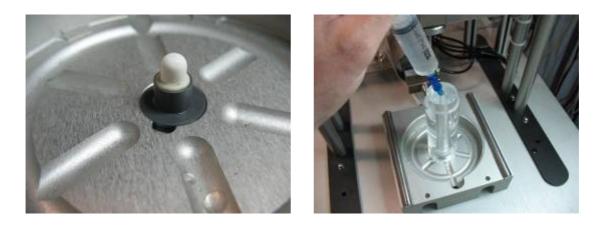

If the ceramic cup is completely dry, first put the ceramic cup into a beaker filled with the degassed deionised water for at least 1 hour to enable the ceramic to get saturated with water. The whole of the ceramic should be below the water level! Do not fill water into the ceramic cup as there is a danger of trapping of air in the ceramic.

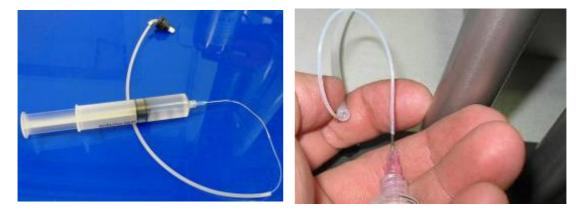
If the tensiometer contains dissolved gases, the vapour point is raised, which restricts the measuring range considerably. Therefore care should be taken to degas the deionised water as completely as possible (e.g. by boiling). To degas, boil water for 5 minutes, then fill a suitable heat resistant container completely without air, seal tightly and place in refrigerator to cool.

An alternative method of de-gassing water is to heat the water to boiling, and then pull a vacuum for 15 minutes. Without heating the vacuum process takes 4 hours or more. During vacuum inductive steering or ultra-sonic stimulates the process.

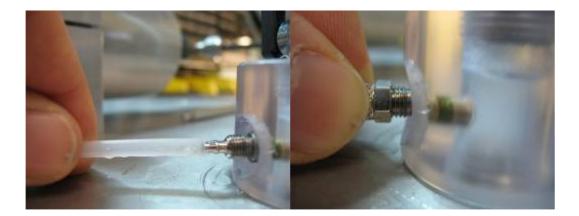
3.13.2 Tensiometer installation

• Remove the tensiometer hose by loosening the coupling from the transparent body.


• Tightly grip the retraction tool into the slot of the black tensiometer body and slowly pull it out of the sample chamber.


- Put the ceramic cup into a beaker filled with the degassed deionised water for at least 1 hour
- Check if the water has entered the plastic transparent hose, if not the ceramic cup seems to be contaminated and must be replaced.

- Lead the plastic tensiometer hose trough the sample holder and fit the tensiometer pressing it gently into the sample holder. Use a small piece of hose to protect the ceramic being touched with bare hands.
- Place the tensiometer reservoir on the cup and fill it with degassed water.


• Fill the tensiometer assembly using the filling syringe. Insert the small hose completely into the tensiometer hose and fill it by emptying the syringe during slowly retracting it.

• Fill the transparent body using the filling syringe filled with degassed water. Lead the thin hose trough the valve, trough the plastic body carefully into the small hole of the metal pressure transducer and empty the syringe until the water comes out of the tensiometer hose coupling.

• Mount the tensiometer hose by pushing the tube over the hose coupling on the transparent body and fastening the coupling by hand. Be sure to tighten is firmly but only by hand so the plastic parts will not be overstressed. (do not use a wrench)

• Connect a syringe (with the plunger fully pushed in) to the transparent body, pull the plunger out and place the wooden stick to keep in this position. Syringes can create a rather high vacuum up to -980 hPa, if the water is not that much degassed then reduce the vacuum by minor plunger pulling i.e. 1 cm.

- Now open the valve (vertical position) and allow the system for some time to retract the air out.
- The reservoir should be refilled every few minutes to prevent it from emptying and pull air into the system.
- Also repeat the syringe vacuum procedure by closing the valve, loosen and empty the syringe, connect it again, pulling vacuum and open the valve.
- If all the air is purged close the valve and the tensiometer is ready for use after checking the calibration.
- If the filling keeps still unsatisfactory, air bubbles may have formed inside the ceramic cap, then completely degas the system again.

3.13.3 Tensiometer calibration

Temperature will mainly determine the accuracy of null point of the tensiometer. So a stable environment temperature will contribute to accurate measurements. The tensiometer can be calibrated at 2 points. One can choose calibration points freely in the range of -600 hPa up to +600 hPa but advisable is to choose these points around the range of interest i.e. +10 hPa and -400 hPa

In a well degassed tensiometer assembly apply an overpressure of 100 mm water by filling the tensiometer reservoir to the filling marker. Be sure to give the system enough time to equilibrate to the pressure.

Small zero settings can be done in the instrument configuration menu, selecting the Soilwatermatrix sensor and pressing the Calibrate sensor button. The zero-ing of the sensor will not influence the zero and scale factors. A wet tensiometer without reservoir should measure about 0 hPa and can be zero-ed.

Example:

A small offset for the tensiometer of -1 hPa is corrected to 0 hPa using the Zero Offset button

Actual Sensor	Values Raw value		Sensitivity		Offset		Engineering	Value	General Configuration Instrument Type Dynamic	an .		Celibration Date 15 - 11 - 2010		
Vertical Stress	0.517	1.	163,139	+	-84.32	-	-0	[kPa]	10 Device Name					
Soliwatermatrix	5.069		199,563	+	-1012.508	-	-1	(hPa)	Device 1 Dynamic comp	reiser				
	9,995		5.163	-	-9.044									
Settlement				+		=	42,55	[mm]	Sensor Configuration	Output				
Shear Stress	0	x	0		0	-	0	[kPa]	Channel Description Vertical Stress Control	Ch No. A01	Changelaure DAQ CH 01	Sensitivity	Offset 0.094704	Zero Offset
Manual Shean Shear Speed (r		ment		2.0	0 0			able Motor aply Speed	Sensor Configuration Channel Description Vertical Stream Solivatemation	ChiNe.	Channelhame DAO CH D1 DAO CH D3	Sensitivity 163,138313 199,562803	Offset -04,319637 -1012,587593	Zero Offset
verse				Fo	nward	_		none	Sittement	MO	DAQ CH BB	6,163087	-0.043858	
Manual Vertic Stress Level (k					0 10		A	wy stress	Vertical Stress Contro P Value	I PID Se	ttings	D Value	Saturati	on Value
D DWD				60	0			STOP	0,8	0,01		0	5	
				U	p									

Before and after pressing the Zero Offset button.

elected I/O Device Device 1 Dynamic compression	Contraction of the second	Selected I/O De Device 1 Dynam				
hannel Number	CO STREETS	Channel Number		B	a Ca	
43	and the second second	Al3				
hannel Name	The second second	Channel Name				
DAQ CH 03	aller 1	DAQ CH 03			Le la la	21
Reference [hPa] Raw value [Volts]			Reference (hPa)	Raw value [Volts]		
Low 0	Measure	Low	0	0	Neasure	
High 0	Measure	High	0	0	Neasure	
	Zero Offset					Zero Office
Sensitivity Offset Zero Offset			Sensitivity Of	fiset Zero Office	я	
service stress						

Be sure to press the Save button for storing the new setting on disk.

3.14 Checking and zeroing the instrument

Before measurements can be performed the instrument calibration and functionality must be checked using the software manual control option.

Make sure that the sensor reading values are within calibration accuracy.

	Values							
	Raw value		Sensitivity		Offset		Enginering \	/alue
Vertical Stress	0,527	x	164,142	+	-86,558	=	0	[kPa]
Soilwatermatrix	0,176	x	199,562	+	-999,793	=	-964,7	[hPa]
Settlement	0,036	x	-5,168	+	38,576	=	38,39	[mm
Shear Stress	0,495	x	163,221	+	-80,265	-	0,5	[kPa]
Manual Shear Shear Speed [r	nm/min]				0			ble Motor bly Speed
	nm/min]		1 I	2,00 Fo			App	ble Motor bly Speed Home
Shear Speed [r -2,00 Reverse Manual Vertic	nm/min]		())		App	bly Speed
Shear Speed [r 2,00 Reverse	nm/min]		().) rward		App	bly Speed
Shear Speed [r -2,00 Reverse Manual Vertic Stress Level [k	nm/min]	i		Fo) rward		App	oly Speed Home

If values are not outside accuracy limits, zero calibration can be performed using the instrument calibration option. For vertical stress, soilwatermatrix, compaction and shear stress the actual value can be zero-ed at no load, using the sensitivity and scale factors. In case of problems the original factory calibration settings can be reloaded. For full sensor calibrations there is a calibration kit available or contact your supplier for calibration service.

			Calibration Date		
Dynamic-Shear			29 - 10 - 2010		
/O Device Name					
Device 2 dynamic-shear					
ensor Configuration	Output				
Channel Description	Ch No.	Channelname	Sensitivity	Offset	Zero Offset
Vertical Stress Control	AO1	DAQ CH 01	0,00682	0,254986	0
Shearmotor Speed	AO0	DAQ CH 00	0,508751	2,5	0
Shearmotor Enable	P0.0	DAQ CH 00			
ensor Configuration	Input				
Channel Description	Ch No.	Channelname	Sensitivity	Offset	Zero Offset
Channel Description Vertical Stress	Ch No. Al1	DAQ CH 01	164,141643	-86,557577	0
Channel Description Vertical Stress Soilwatermatrix	Ch No. Al1 Al3	DAQ CH 01 DAQ CH 03	164,141643 199,562496	-86,557577 -999,79286	0
Channel Description Vertical Stress	Ch No. Al1	DAQ CH 01	164,141643	-86,557577	0
Channel Description Vertical Stress Soilwatermatrix Settlement	Ch No. Al1 Al3 Al0 Al2	DAQ CH 01 DAQ CH 03 DAQ CH 00 DAQ CH 02	164,141643 199,562496 -5,16826	-86,557577 -999,79286 38,575737 -80,265007	0 0 0 0

4 Soil samples

The soil sample should be undisturbed and as the measurement quality depends on the soil sample quality care should be taken during sampling. A practical way of sampling is using the hammering method; the most precise but costly method is using hydraulic sampling equipment; this is not further discussed here.

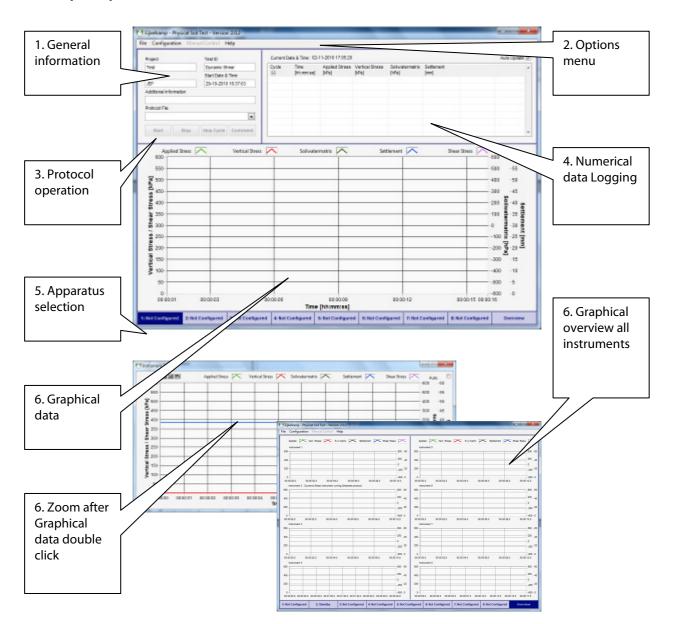
4.1 Field sampling

- Clear and prepare the soil surface to make sure representative samples can be taken.
- Place 5 sample rings on the soil surface.
- Place the sample tool over the sample ring
- Drive the ring fully into the soil by hammering the sample tool
- Excavate the sample by spade or trowel
- Remove the surplus soil to ca 2-5 mm of the sample ring both sides
- Cover the ring with transport caps preventing to dry out and compressing the soil sample
- Register the ring number and sample details

4.2 Lab sample preparation

- Carefully remove the surplus soil on both sides of the sample ring by stepwise vertical cuttings breaking horizontal parts soil away. In this way the pore structure will kept in original condition.
- Optional weigh the sample for volumetric soil moisture content of the field capacity
- Bring the soil moisture matrix to a predetermined value of i.e. 60 hPa. (Eijkelkamp can supply the proper equipment for this)
- Weigh the sample for volumetric soil moisture content

5 Software functions


The software can be evaluated even without an instrument connected. Click the Eijkelkamp logo on your desktop to start the physical Soil Test program.

After the initialisation picture disappears, the main window will appear.

The screen is divided in 6 main parts:

- 1. General information
- 2. Options menu (pull down)
- 3. Protocol operation
- 4. Data logging (numerical)
- 5. Apparatus selection
- 6. Graphical presentations

The software supports both compression and shear test instruments, the instrument function static or dynamic are factory configured.

1 General information

- Project name
- o Test ID
- $\circ \quad \ \ \, Start\,date\,\&\,time$
- o Operator name
- o Additional information comments

2 **Options menu**

- o File
 - Load session
 - Save session

These options loads and saves the used instrument information used in this session.

Save in:	JEP	•	G 🤌 📂 🛄 -	
(Alia)	Name	*	Date modified	Туре
Recent Places		No items match your	search.	
Desktop				
Libraries				
Computer				
Network	File name:	III JEP_20101102_171241.session	-	► Save
	Save as type:	Session Files (*.session)	•	Cancel

Process file

This option adds characters to the data files for easy recognition of events in the data file. These marked events can be used for fast relevant data sorting.

Process Measuremen				
Original Meas	urement File Loc	ation:		
C:\Soil Test D	ata∖Data]
New File Loca	ition:			
C:\Soil Test D	ata\Data]
Mark following i	tems in selec	ted file		
Mark following i		ted file		
-			Mark with: (*]

- Exit
 - Exit ends the program and asks confirmation if this is wanted.

• Configuration

File Location Setup Instrument Cardigunstion		Current I	lete & Time: Al-	11-2010/17:0120	Oynamic-Sh	ear instrument			Auto-Update
207 20-11- national Information Protocol File Shearboat	Dream de 6 Time 2018 12 46 12	Cycle H	Time pit.ronauj		Vertical Stress (stra)	Selvaramit's (54)	Settlement jonej	Snear Speed parameter	Shear Shean She
Appled Stem	Vertical Strem		Solvato		Set	tienent 🖳	She		00 -00 00 -00 00 -05 00 -05

File location setup

In the file location setup the destination of the user data is appointed. For every operator separate subdirectories will be created automatically for both data and protocols.

File Location Setup					
Data Location	E				
C:\Soil Test D			a	1	
Configuration	Location:				
C:\Soil Test D	ata\Protocols		-	1	
					_
			Save	Cancel	

Instrument configuration

Instrument configuration displays the settings of the selected instrument. The sensor settings can be chanced for calibration purposes or perform sensor zeroing using the zero offset. Factory settings can be restored using the Restore Factory Defaults function,

		Calibration Date		
		29 - 10 - 2010		
Dutput				
Ch No.	Channelname	Sensitivity	Offset	Zero Offset
AO1	DAQ CH 01	0,00682	0,254986	0
AO0	DAQ CH 00	0,508751	2,5	0
P0.0	DAQ CH 00			
Ch No.	Channelname	Sensitivity	Offset	Zero Offset
				0
				0
				0
AI2	DAQ CH 02	163,221453	-80,265007	0
	ttings			
l Value	ungs	D Value	Saturat	ion Value
0,01		0	5	
1				
	Ch No. AO1 AO0 P0.0 nput Ch No. Al1 Al3 Al0 Al2 PID Sei I Value	Ch No. Channelname DAQ CH 01 AO1 DAQ CH 01 A00 DAQ CH 00 P0.0 DAQ CH 00 P0.0 DAQ CH 00 P0.0 DAQ CH 00 P0.0 DAQ CH 01 A13 DAQ CH 01 A13 DAQ CH 00 A10 DAQ CH 02 PID Settings IValue	Ch No. Channelname Sensitivity AO1 DAQ CH 01 0,00682 AO0 DAQ CH 00 0,508751 P0.0 DAQ CH 00 0 nput Ch No. Channelname Ch No. Channelname Sensitivity Al1 DAQ CH 01 164,141643 Al3 DAQ CH 03 199,562496 Al0 DAQ CH 02 163,221453 PID Settings IValue D Value	Output Sensitivity Offset AO1 DAQ CH 01 0,00682 0,254986 AO0 DAQ CH 01 0,00682 0,254986 AO0 DAQ CH 00 0,508751 2,5 P0.0 DAQ CH 00 0,508751 2,5 P0.0 DAQ CH 00 0 0,508751 2,5 P0.0 DAQ CH 00 0,508751 2,5 0 nput Ch No. Channelname Sensitivity Offset Al1 DAQ CH 01 164,141643 -86,557577 Al3 DAQ CH 03 199,562496 -999,79286 Al0 DAQ CH 02 163,221453 -80,265007 -80,265007 PID Settings IValue D Value Saturat

Protocol configuration

Measurement protocols are written using predefined function tables. After the correct instrument type selection and a protocol name is defined the program steps table created using select boxes.

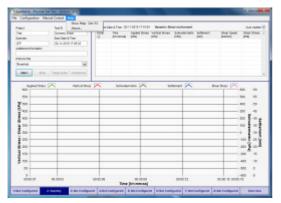
Yolocol name						Pro	nocol Typ	
Reps Cycle: Cycle Name	Les Deris	Caple Time		Speed	Stop Trigger	1	None Static Test	
	[3]	phonences	[kPa]	Inconsel			Dynamic Tr Shear Test Dynamic-Si	
					Add Step	Chang	pe Mep	Getete Step
		1	How	Open	Save Au		cuta	Cancel

• Manual Control

Actual Sensor Values

The actual values of the sensor signals are displayed. Also the shear movement and vertical stress can be controlled. The applied safety stress has to be performed in

Actual Sensor	ruides							
	Raw value		Sensitivity		Offset		Enginering	Value
Vertical Stress	0,527	x	164,142	+	-86,558	=	0	[kPa]
Soilwatermatrix	0,176	x	199,562	+	-999,793	=	-964,7	[hPa]
Settlement	0,036	x	-5,168	+	38,576	=	38,39	[mm]
Shear Stress	0,495	x	163,221	+	-80,265	-	0,5	[kPa]
Manual Shearr Shear Speed [r		nent	1 1	2.00	0]		ble Motor ply Speed
Shear Speed [r 2,00	nm/min]		i i	2,00 Fo]		
Shear Speed [r 2,00 everse Manual Vertic	nm/min])]		ply Speed
Shear Speed [r 2,00 everse	nm/min]) rward		Ap	ply Speed
Shear Speed [r 2,00 everse Manual Vertic Stress Level [k	nm/min]	ſ) rward		Ap	ply Speed Home


o Help

Show help

Displays the user manual.

About

Information about the software version

3 **Protocol operation**

0

- Protocol file name The na
 - e The name of the protocol file that is executed
 - Protocol operation executing commands for measuring protocol

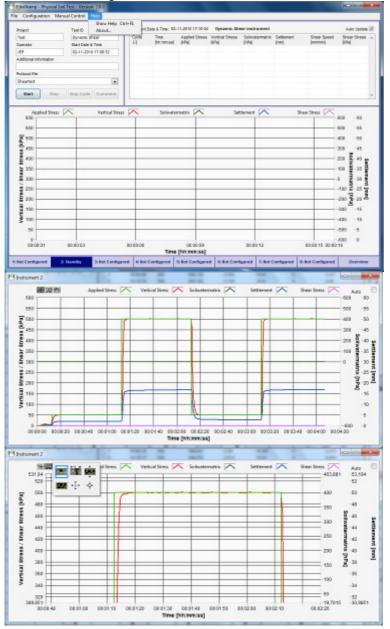
A measuring protocol can be started, paused, stopped, skip a protocol step or add a comment to the data file.

4 Numerical Data logging

o Numerical presentation of logged data

The numerical data can be observed during measurements, looking in the previous displayed values the upper right check box auto update is disabled and using the right hand slide ruler the data can be scrolled.

5 Apparatus selection


• Selection of instrument 1 up to 8 including instrument status.

Click on the bottom bar to select the instrument of interest. The right most button displays al the instruments graphs on one screen.

6 Graphical data

$\circ~$ Graphical presentation of actual and logged data and zoom functions

Double clicking when the mouse pointer is on the graph will invoke the zoom screen. The left-up popzoom option menu enables the different zoom functions on the part of interest. Double-click on the zoom screen enables the auto full scale zoom option. Graph scales can be user edited clicking the full scale number and editing it.

o Graphical overview presentation of all instruments

	Instrument 1	is 🔨 S.w.m	atrix 🦰 Setti	ement 🦰 She	yr Stess	Applied .		S.w.ma	trix 🔨 Sett	tiement 🔼 Si	near Stess
600	instrument 1				-600 -60	600 -					- 600 -
400 -					-250 -40	400					-250
					-0						-0
200 -					250 20	200					250
0-00-0	0.00,0 00.00.02,0	00.00.04,0	00.00.08,0	00:00:08,0		0-00:00,0	00.00.02,0	00.00:04,0	00:00:08,0	00:00:08,0	-600
	nstrument 2 : Dynamio-She	ar instrument running	Sheartest, protocol		-000 -00	Instrument 600 - r	10				- 600 -
- 000						000-					
400 -					-250 -40	400					-250
200 -					-0 -250-20	200 -					-250
											250
	00.0 00.00.02.0	00:00:04.0	00:00:00.0	00:00:08.0	600-0	00.00.00.0	00.00:02.0	00.00:04.0	00:00:08.0	00.00.08.0	00:00:10.0
. 000	nstrument 3				-800 -80	600 -	17.				- 600 -
					-250 _40						-250
					-0 -40	400					-250
400					250 20	200 -					-250
400 200											-400 -
200 -											
200 0 00:00	00.0 00.00.02.0	00:00:04.0	00:00:06.0	00:00:08.0	800-0	0-0.00.00.0	00:00:02.0	00:00:04.0	00:00:05.0	00:00:08.0	00:00:10.0
200 0 00:00	:00.0 00:00:02.0 nstrument 4	00:00:04.0	00:00:08.0	00:00:08.0				00:00:04.0	00:00:08.0	00:00:08.0	-600 -
200 - 0 - 00:00 1 600 -		00:00:04.0	00:00:08.0	00:00:08.0	00:00:10.0 	00:00:00.0 Instrument 600 -		00:00:04.0	00.00.08.0	00:00:08.0	-600 -
200 - 0 - 00:00		00:00:04.0	00:00:08.0	00:00:08.0	00:00:10.0	00:00:00.0 Instrument		00:00:04.0	00:00:08.0	00:00:08.0	
200 - 0 - 00:00 1 600 -		00:00:04.0	00:00:08.0	00:00:08.0	00:00:10.0 -000 -00 -250 _40	00:00:00.0 Instrument 600 -		00:00:04.0	00:00:08.0	00:00:08.0	-800 -250

30

5.1 Measurement protocols

All measurement steps can be programmed by means of protocols. A protocol file is written using the measurement protocol configuration option.

User written or modified protocols are stored into the user directory name which is automatically generated upon entering the operator name.

trotocol same						Protocol Typ	pe
lops						Static Test	9
Cycle Cycle Name D	Log Rate (s)	Cycle Time [hhomess]	Stress [kPa]	Speed (mmimin)	Slop Trigger	Stop Condition	
					Add Step	Change Step	Delete Step
			Here	Oper	Save Ar	Save & Execute	Cancel

• New

Starting a new file for saving the measurement protocol steps

- Open
 Open
- Opening an existing protocol file for execution or editing
 Save as
- Saving a protocol file with his specific name
- Save & Execute Saves and starts executing the protocol file on the instrument
- Cancel
 Discards the changes and returns to the main window

To program a protocol you can choose the kind of apparatus the program will be written for. Be sure to select the right apparatus as the options differ per apparatus. Only a protocol file written for the specific type instrument can be executed. The functionality of protocol steps and step conditions are specific for each type of instrument.

Available apparatus are

- Compression (static)
- Dynamic compression
- Shear (static)
- Dynamic shear

Shops Cycle Dycle Name Log Rate Cycle Time Stream Speed Step Trigger Sta 0 [9] [bbrrenned] [9Pa] [reminie] Step Trigger Sta Shar Tar Dynamic-Shar Tar	Protocol same							Protocol Ty None	pe
Cycle Name Log Rate Cycle Time Stream Speed Stop Trigger Sto D [5] (bitmexce) [6Pe] (mminin) Stear Text Stear Text	Tops							✓ None	
		Log Rate [5]	Cycle Time (hismense)	Stress [kPa]	Speed (Imminin)	Slop Trigger	Sho	Shear Ter	
Add Step Charge Step Delete						Add Step	0	tange Step	Delete Step

For static compression and static shear basic commands (cycle steps) are available, handling general measuring protocols.

The dynamic compression and dynamic shear instruments can use more sophisticated functions as cycle step loops and advanced conditional cycle steps.

All protocol steps use the same step structure:

Cycle ID	cycle step number
Cycle name	type of cycle step command
Log rate	data logging interval on file
Cycle Time	Time for the cycle step to perform its action
Stress	vertical stress on the soil sample
Speed	shear speed, only for shear instruments
Stop trigger	stop condition to end the cycle step time in case of trigger event
Stop condition	the parameter value or text used by the trigger condition

5.2 Program steps for the Compression apparatus

Protoc	ol same						Protocol Ty Static Test	pe (s
Stops								
Cycle 0	Cycle Name	Log Rate [6]	Cycle Time (hhommuss)	Stress [sPa]	Speed (mmimin)	Skap Trigger	Stop Coedition	
						Add Step	Charge Step	-

• Static compression

Vertical stress will be applied to the soil sample during a specified time or one of the predefined conditions: Stop condition is based on the time specified.

Step Type			
Static Compression	•		
Cycle Time [hh:mm:ss] 00:00:00	Log Interval [s]		
Vertical Stress [kPa]			
0			
Stop Condition Trigger			
None	•		
Stop Condition Value		Condition Type	
		None	
		1000007	
		ОК	Cancel
		ОК	Cancel
		ОК	Cancel
Add 94-1		ОК	Cancel
Add Step 1		ОК	Cancel
Add Step 1		ОК	Cancel
		ОК	Cancel
Step Type None		ОК	Cancel
Step Type None ✓ None		OK	Cancel
Step Type None ✓ None Static Compression		ОК	Cancel
Step Type None ✓ None Static Compression Message		ОК	Cancel
Step Type None ✓ None Static Compression Message Wait on Operator Input		ОК	Cancel
Step Type None ✓ None Static Compression Message Wait on Operator Input	 	ОК	Cancel
Step Type None ✓ None Static Compression Message Wait on Operator Input error oness [m of 0		OK	Cancel
Step Type None ✓ None Static Compression Message Wait on Operator Input		OK	Cancel
Step Type None ✓ None Static Compression Message Wait on Operator Input Wait on Operator Input 0 Stop Condition Trigger			Cancel
Step Type None ✓ None Static Compression Message Wait on Operator Input error oness [m of 0		Сondition Type	Cancel
Step Type None ✓ None Static Compression Message Wait on Operator Input Wait on Operator Input 0 Stop Condition Trigger			Cancel

• Message

Display a message in a box during a specified time.

• Wait on operator input

Displays a message and wait until the operators acknowledges the message with the OK button.

5.3 Program steps for the dynamic load Compression apparatus

Step Type			
None			
✓ None Static Compression			
Message			
Wait on Operator Input			
Start Loop			
End Loop			
Stop Condition Trigger			
	-		
Stop Condition Value		Condition Tune	
Stop Continuon value		Condition Type	
		OK	Cancel
Add Step 1	specier apartica	ОК	Cancel
Add Step 1 Step Type	gresser agardia	OK	
	national according	OK	
Step Type Static Compression		OK	
Step Type Static Compression	Log interval [s]	OK	
Step Type Static Compression Cycle Time [hh:mm:ss]	Log Interval [s]	OK	
Step Type Static Compression Cycle Time [hh:mm:ss] 00:00:00	Log Interval [s]	OK	
Step Type Static Compression Cycle Time [hh:mm:ss] 00:00:00	Log Interval [s]	OK	
Step Type Static Compression Cycle Time [hh:mm:ss] 00:00:00 Vertical Stress [kPa] 0	Log Interval [s]	OK	
Step Type Static Compression Cycle Time [hh:mm:ss] 00:00:00 Vertical Stress [kPa]	Log Interval [s]	OK	
Step Type Static Compression Cycle Time [hh:mm:ss] 00:00:00 Vertical Stress [kPa] 0 Stop Condition Trigger None	Log Interval [s]	OK	
Step Type Static Compression Cycle Time [hh:mm:ss] 00:00:00 Vertical Stress [kPa] 0 Stop Condition Trigger None Vone	Log Interval [s]		
Step Type Static Compression Cycle Time [hh:mm:88] 00:00:00 Vertical Stress [kPa] 0 Stop Condition Trigger None \$\stress	Log Interval [s]	Condition Type	
Step Type Static Compression Cycle Time [hh:mm:ss] 00:00:00 Vertical Stress [kPa] 0 Stop Condition Trigger None Stress Settlement	Log Interval [s]		
Step Type Static Compression Cycle Time [hh:mm:88] 00:00:00 Vertical Stress [kPa] 0 Stop Condition Trigger None \$\stress	Log Interval [s]	Condition Type	

• Static compression

Stress the soil sample during a specified time or one of the predefined conditions: Stop conditions can be

Stress

Compression until a specific stress value is reached.

• Settlement

Compression until a specific settlement value is reached.

• Moisture (absolute value)

Compression until a specific moisture value is reached.

• Moisture (down slope and value)

Normally a shear process waits using this condition for the soil moisture tension is reducing and below 0 hPa. This prevents faulty measurements due the 'waterskiing' effect.

• Moisture (up slope and value)

Shear process waits using this condition for the soil moisture tension is increasing and above the specified soil moisture value in hPa. The conditions are defined as the change of 0.4 hPa in a time period of 5 seconds; these values can be manual edited in the config.ini file.

• Shear stress

This can be used driving the motor forward up to a position where shearing forces reaches the specified value.

All stop conditions can be addressed to end the current program step or to end the loop. Therefore conditions will be marked with a letter S (Step end) or L (loop end)

• Message

Display a message in a box during a specified time.

• Wait on operator input Display a message and wait until the operator acknowledge the message with the OK button.

• Start loop

Starting a number of program steps that are repeated for the number of loops specified or until the stop condition of one of the program lines is reached. More then 1 loop can be used sequential but no loop in loop (recursive loops) are allowed.

• End Loop

Ending the program-step loop after the stop condition is fulfilled by number of loops or individual program line stop condition.

Step Type None	
✓ None Static Compression	
Message	
Wait on Operator Input	
Start Loop End Loop	
Stop Condition Trigger	
	<u>.</u>
Stop Condition Value	Condition Type

5.4 Example Shear protocol

Explanation of the 'sheartest' example

message to operator 'place lever in position OPERATE'

start compressing at 400 kPa during 1 hour or until the soil moisture is negative and declining

shear the motor forward with a speed of 1 mm/min during 3 minutes (3 mm) or until the shear force exceeds the 5 kPa (shear process starts), maintaining the vertical stress at 400 kPa

shear at 0.2 mm/min during 1 minutes with a log interval of 0.2 sec, maintaining the vertical stress at 400 kPa shear at 0.2 mm/min during 4 minutes with a log interval of 2 sec, maintaining the vertical stress at 400 kPa shear at 0.2 mm/min during 25 minutes with a log interval of 10 sec, maintaining the vertical stress at 400 kPa shear at 0.2 mm/min during 60 minutes with a log interval of 60 sec, maintaining the vertical stress at 400 kPa shear at 0.2 mm/min during 60 minutes with a log interval of 60 sec, maintaining the vertical stress at 400 kPa shear at 0.2 mm/min during 60 minutes with a log interval of 60 sec, maintaining the vertical stress at 400 kPa shear at 0.2 mm/min during 60 minutes with a log interval of 60 sec, maintaining the vertical stress at 400 kPa shear back at full speed for 15 minutes (30 mm) to start position

Sheartest							Protocol Type Shear Test	Ŧ
Steps							Shear rest	*
	Cycle Name	Log Rate [s]	Cycle Time [hh:mm:ss]	Stress [kPa]	Speed [mm/min]	Stop Trigger	Stop Condition	*
1	Wait on Operator Input	1	00:00:00	0	0	Operator Input	Pace the lever in position OPEF	
2	Static Compression	1	01:00:00	400	0	Moisture (Down Slope)	0	
3	Shear on Time or Stop Condition	1	00:03:00	400	1	Shear Stress	5	
4	Shear on Time or Stop Condition	0,2	00:01:00	400	0,2	None		
5	Shear on Time or Stop Condition	2	00:04:00	400	0,2	None		
6	Shear on Time or Stop Condition	10	00:25:00	400	0,2	None		
7	Shear on Time or Stop Condition	60	01:00:00	400	0,2	None		
8	Shear Back at Full Speed	1	00:15:00	0	2	None		
								_
						Add Step	Change Step Delete Step	

Example program Shear test instrument

5.5 Program steps for the Shear apparatus

None	
J None	
Static Compression	
Message	
Wait on Operator Input	1
Shear on Time	L.
Shear on Time or Operator Input	
Shear on Time or Stop Condition	
Shear Back at Full Speed	
	w
Stop Condition Value	Condition Type

(Per protocol step both cycle time and log interval are programmable.)

• Static compression

Vertical stress will be applied the soil sample during a specified time or one of the predefined conditions: Stop conditions can be

• Stress

Compression until a specific stress value is reached.

Settlement

Compression until a specific settlement value is reached.

Moisture (absolute value)

Compression until a specific moisture value is reached.

• Moisture (down slope and value)

Normally a shear process waits using this condition for the soil moisture tension is reducing and below 0 hPa. This prevents faulty measurements due the 'waterskiing' effect.

• Moisture (up slope and value)

Shear process waits using this condition for the soil moisture tension is increasing and above the specified soil moisture value in hPa. The conditions are defined as the change of 0.4 hPa in a time period of 5 seconds, these values can be manual edited in the config.ini file.

• Shear stress

This can be used to drive the motor forward to a position where shearing forces reach the specified value.

• Message

Display a message in a box during a specified time

• Wait on operator input

Display a message and wait until the operator acknowledges the message with the OK button.

• Shear on time

Shear the sample during a specified time only or until the end position is reached. At the normal shear speed of 0.2mm/min the shear process will take 100 minutes, (1:40hour)

• Shear on time and operator input

Shear the sample during a specified time or stopped before by the operator

• Shear on time or stop condition

Shear the sample during a specified time or one of the predefined conditions: Stop conditions can be:

- Stress
 - Shear until a specific stress value is reached.
- **Settlement** Shear until a specific settlement value is reached.

• Moisture (absolute value)

Shear until a specific moisture value is reached.

• Moisture (down slope and value)

Shear process stops for the soil moisture tension is decreasing and below the specified soil moisture value in hPa. The conditions are defined as the change of 0.4 hPa in a time period of 5 seconds, these values can be manual edited in the config.ini file.

• Moisture (up slope and value)

Shear process stops for the soil moisture tension is increasing and above the specified soil moisture value in hPa. The conditions are defined as the change of 0.4 hPa in a time period of 5 seconds, these values can be manual edited in the config.ini file.

• Shear stress

This can be used to drive the motor (fast) forward to the stage position where the shearing process begins.

• Shear back at full speed

Driving at 2 mm/min the motor will be sheared back until the specified time or the end switch of the motor that disables this movement. Typically the shear back time is 15 minutes.

Saep Type				
Shear on Time or Step Conditi	ice e	1		
Cycle Time (Hommon)	Log Interval [b]			
86-00-08	2,0			
to day to the second second				
Constant Strong (Chai	Shear Speed (inm/mi	•		
	Shear Speed (mm/m	•		
l Stop Condition Trigger				
l Stop Coedition Trigger Nors √ Nors]		
l Stop Coedition Trigger Nove V Nove Stees]] Canditian T	Ype	
l Stop Coedition Trigger Nors √ Nors]	Ype	
Stores]] Canditian T	Abe	

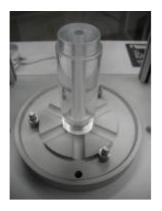
5.6 Program steps for the dynamic load Shear apparatus

(extra steps in addition of the standard version) These options makes it possible to perform all actions for the dynamic compression apparatus tests.

• Start loop

Starting a number of program steps being repeated for the number of loops specified or until the stop condition of one of the program lines is reached. More then 1 loop can be used sequential but no loop in loop (recursive loops) are allowed.

• End Loop

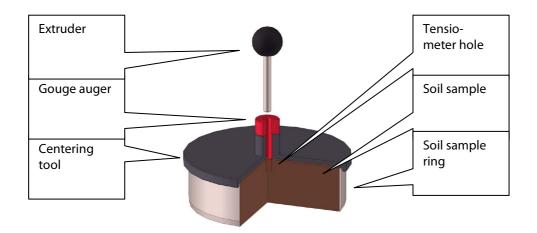

Ending the program-step loop after the stop condition is fulfilled by number of loops or individual program line stop condition.

6 Measuring procedure compression test

In prior, switch on the instrument, apply the proper air pressure and start the program PST. Check the proper functioning using the manual control option

1 Empty the tensiometer reservoir by sucking it with a syringe with a short hose.

2 Remove the tensiometer reservoir with a rotating motion.



3 Place the sintered plate with the tensiometer spare hole on the sample chamber. Optional place a high flow filtration paper with tensiometer spare hole preventing smearing of the sintered plates.

4 Turn the soil sample with blunt side of sample ring for tensiometer hole preparation.

5 Make a spare hole in the soil sample for the tensiometer using the gouge auger tool to make sure that the tensiometer will fit precise as possible.

6 Place the soil sample with the tensiometer hole downwards on the sample holder .

7 Place the upper sintered plate optional using filtration paper and the sample stamp. During long tests cover the sample with a foil to prevent drying out the sample due to evaporation.

8 Lift the height sensor and place the rod and centre them carefully.

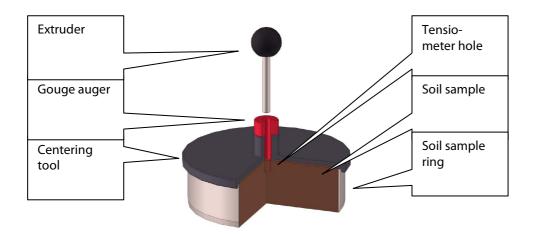
9 Close the safety cover.10 Place the handle in position OPERATE11 Press the yellow RESET button.

12 Start the measurement protocol pressing the software START button

During the measurement protocol the measurements can be stopped, paused, skip the executede cycle or add a comment to the logfile.

- 13 Take out the soil sample by placing the handle in UP position.
- 14 Clear the sample chamber and tensiometer carefully i.e. using a vacuum cleaner and a soft brush.

15 Replace the tensiometer reservoir on the tensiometer cup and refill the reservoir with degassed demineralised water to prevent it of drying out.


7 Measuring procedure Shear test

In prior, switch on the instrument, apply the proper air pressure and start the program PST. Check the proper functioning using the manual control option

Place the traverse in the backwards position for optimal accessibility of the sample chamber.
 Empty the tensiometer reservoir by sucking it with a syringe with a short hose.
 Remove the tensiometer reservoir with a rotating motion.

4 Turn the soil sample with blunt side of sample ring for tensiometer hole preparation. 5 Make a spare hole in the soil sample for the tensiometer using the gouge tool to make sure that the tensiometer will fit precise as possible.

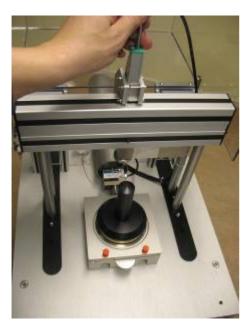
6 Place the lower shear ring into the sample chamber .

7 Place the sintered plate with the tensiometer spare hole in the sample chamber. Optional place a high flow filtration paper with tensiometer spare hole preventing smearing of the sintered plates.

8 Place the upper part of the sample chamber positioning it with the red fixation pins.

9 Place the transfer ring for precise transfer of the sample into the sample chamber.

10 Place the sample with the tensiometer hole downwards on the transfer ring. Place the upper sintered plate optional using filtration paper.


11 Place the sample transfer stamp (thick) and the rod (short) and centre it carefully.

12 The sample can be transferred from sample ring to sample chamber pushing it gently by hand with minimal compression until completely transferred. Alternatively one can use the manual control using the software and the handle in position OPERATE or even write an automatic transfer protocol.

13 Remove the empty sample ring and the transfer ring.

15 Place the sample holder fillplate. Lift the height sensor and place the sample transfer stamp (**thin**) and the sample transfer rod (**long**) and centre them carefully.

14 Place the traverse in the centre position using the red fixation pins.

⚠

15 Remove the red fixation pins !

17 Close the safety cover.16 Place the handle in position OPERATE18 Press the yellow RESET button.

19 Start the measurement protocol pressing the software START button


During the measurement protocol the measurements can be stopped, paused, skip the executede cycle or add a comment to the logfile.

20 Take out the soil sample by placing the handle in UP position and shifting the traverse in backwards position. 21 Clear the sample chamber and tensiometer carefully i.e. using a vacuum cleaner and a soft brush.

22 Replace the tensiometer reservoir on the tensiometer cup and refill the reservoir with degassed demineralised water to prevent it of drying out.

Nothing in this publication may be reproduced and/or made public by means of print, photocopy, microfilm or any other means without previous written permission from Eijkelkamp Agrisearch Equipment.

Technical data can be amended without prior notification.

Eijkelkamp Agrisearch Equipment is not responsible for (personal damage due to (improper) use of the product.

Eijkelkamp Agrisearch Equipment is interested in your reactions and remarks about its products and operating instructions

Appendix 1 Theory of operation soil compaction

Preface.

Soil formation including aggregate development involves changes in both physical and mechanical properties, and therefore, requires the exact definition of the limits within which properties are quantified. This is true, because in situ soil formation processes have to be linked to internal and external conditions (climatic, mechanical, thermal, hydrological, or chemical aspects) for a particular situation. Thus, all properties such as soil strength, stress attenuation, changes in soil structure or pore distribution, water fluxes, gas exchange are material functions with well-defined and quantified limits. Consequently, in order to deal with soil properties, stress, strain and strength definitions are initially required to later define the limits of the material functions with respect to the application of external stresses.

Definitions:

Force applied to a soil-per-unit area is defined as stress.

Stresses working along the surface will also induce stresses in the soil, which may result in a three- dimensional deformation of the soil volume or will be transmitted as a rigid body. The mechanical behavior of a soil (volume change and shear strength) can be described in terms of the soil stress state. The number of stress state variables required to define the stress state depends primarily upon the number of phases involved. The effective stress XX can be defined as a stress variable for saturated conditions and is the difference between the total (X) and the neutral stress (u_w) which is equal to the pore water pressure:

$$\sigma' = \sigma - u_{\tau}$$

where \square is transmitted by solid and (u_w) by the liquid phase, respectively. In unsaturated soils stresses are transmitted by the solid, liquid and gaseous phases. Thus, Equation [3.1] becomes:

$$\sigma' = (\sigma - u_a) + X(u_a - u_w)$$

where u_a and u_w are pore air and water pressures, respectively, and X is a factor which depends on the degree of saturation. At saturation ($u_w = 0$), X = 1, while at $u_w = -10^6$ kPa, X = 0.

<u>Compression</u> refers to a process that describes the increase in soil mass-per-unit volume (increase in bulk density) under an externally applied load or under changes of internal pore water pressure. Examples of externally applied static or dynamic loads are vibration, rolling, trampling, etc. while internal forces-per-unit area include such factors as pore water pressure or suction caused by a hydraulic gradient.

In saturated soils, compression is called <u>consolidation</u>, while in unsaturated soils, it is called <u>compaction</u>. Consolidation, therefore, depends on the drainage of excess soil water determined by hydraulic conductivity and gradient. However, during compaction, less compressible air will be expelled as a function of air permeability, pore continuity and water saturation in the profile. Consolidation tests are, mainly used in civil engineering (e.g., road construction).

Soil compressibility described by the shape of the stress strain curve is defined as a resistance to a volume decrease, when the soil is subjected to a mechanical load. Compaction tests are used both for laboratory and for field soil compression characterizations.

In laboratory compaction, the optimum diameter to height ratio of the test cylinder should be 3-5 in order to minimize the effect of friction between cylinder wall and sample. Compaction tests to determine soil strength can be carried out on homogenized, undisturbed or bulk soil samples or single aggregate samples at different pore water pressure (i.e. water suction).

<u>Compactability</u> is the difference between the initial and maximum densities to which a soil can be compacted by a given amount of energy at defined water content.

Measurements of Soil Strength

The determination of soil strength parameters requires measurements under well-defined laboratory conditions

Uniaxial Compression Test

The uniaxial compression test is used to define the pressure at which soil begins to fail at a given water content. A vertical normal stress (\square_1) is applied to the soil sample, while the stresses on the planes mutually perpendicular to the \square_1 direction ($\square_2 = \square \square_3$) are zero. The uniaxial compression test is often used to determine the tensile strength of single aggregates (crushing test).

Confined Compression Test

Soil stress-strain relationships of undisturbed structured and homogenized soils with respect to volume change are quantified in confined compression test (*oedometer* tests). In contrast to uniaxial compression tests, stresses in the \mathbb{Z}_2 and \mathbb{Z}_3 direction are undefined (rigid wall of the soil cylinder). Both time and load dependent changes in soil deformation are measured (recorded as settlement). The slopes in a void ratio *e* versus *log* \mathbb{Z} -plot of the virgin compression line and the re-compression line are referred to as the compression index ($C_c = -\mathbb{Z}e / \mathbb{Z}/og\mathbb{Z}$) and swelling index ($C_s = -\mathbb{Z}e / \mathbb{Z}/og\mathbb{Z}$). The transition from the region of over-consolidation (re-compression) to normal consolidation (virgin compression) is defined by the pre-compression stress which separates the stress range where soil deformation is elasto-plastic (i.e. partly irreversible).

The precompression stress is defined as the stress value at the intersection of the less steep recompression curve and the virgin compression line. The latter straight line portion has a steeper slope if plotted on a semilog scale. Many methods are available to determine the precompression stress but that of Casagrande is most frequently used. Generally, the stress strain tests can be performed under 3 different boundary conditions:

A) In the consolidated drained test (CD), the soil sample is equilibrated with the mean normal stresses prior to an increase in the vertical stress (\square_1); the pore water drains off when the decrease in volume exceeds the air-filled pore space. Therefore, the applied stresses are assumed to be transmitted as effective stresses via the solid phase.

B) In the consolidated undrained test (CU), pore water cannot be drained off the soil as vertical stress increases. Thus, high hydraulic gradients occur and the pore water reacts as a lubricant with a low surface tension. Thus, in the CU test, shear parameters are much smaller and pore water pressure values are much greater than those in the CD test.

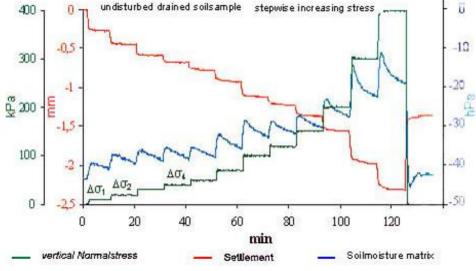

C) The highest neutral stresses and, therefore, the lowest soil strength is measured in the unconsolidated undrained test (UU), where neither the effective nor the neutral stresses are equilibrated with the applied stress at the beginning of the test.

Figure shows the stress strain device which enables the testing and quantification of the internal soil strength, the stress induced height changes which also affect the hydraulic and pneumatic soil functions.

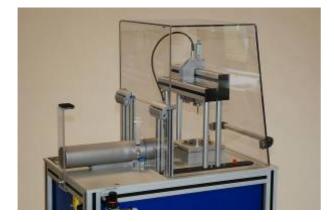
Undisturbed or well defined homogenized soil samples within the soil cylinders will be fixed, the tensiometer at the bottom connected with the gauge and the initial pore water pressure registered. The top capping will be placed on the sample, the strain gauge linked with the capping and the data recording controlled. In dependence of the intended test procedure either the pre-equilibration of the soil samples will be waited in order to get a defined pore water pressure controlled stress strain experiment or the stresses will be applied immediately.

The stress application and the induced strain (height and pore water pressure changes will be recorded with a frequency which can be defined according to the specific research experiments in between x/min to y/min.)

A typical graph of the experiment

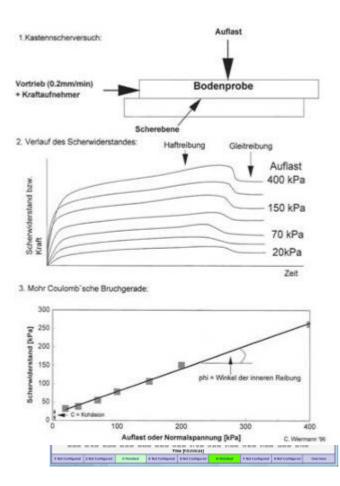
The time steps as well as the normal stresses applied can be varied according to the specific requirements of the experiments between x- minutes per stress applied within the stress range of 0-400kPa, as well as it can be controlled either by the still occurring strain at a given stress applied or the allowed pore water pressure variations defined by the posed research question.

The analysis of the stress strain and stress change in pore water pressure behavior can result in the determination of the precompression stress, the determination of the effective stresses, soil resilience (related to the height gain after stress release), compression index Cc (= slope of the virgin compression line). (for more detailed information see the attached literature)


Shear strength parameters

The shear strength parameters cohesion (c) angle of internal friction (\boxtimes) describe the relation between the normal stress applied and the shear resistance which can be mobilized against any kind of deformation or strain and are defined according to the Mohr Coulomb equation:

 \boxtimes = tan $\boxtimes \boxtimes_n + c$.


3 different tests (uniaxial compression test, triaxial test, and direct shear test) can be carried out to obtain the shear parameters which according to the boundary conditions give more or less precise and defined results. The uniaxial compression test only informs about the cohesion, while the triaxial test is the most defined but also most time consuming and expensive one, which leads to only very seldom application of this test approach. Thus, primarily results of the direct shear test are presented in the literature and may be also compared with only rarely used triaxial test results.

This direct shear test is carried out under confined conditions: i.e. type and direction of the shear plane, which is assumed to be affected only by normal and shear stresses, are fixed. Normal stress is applied to the specimen in the vertical and shear stress in the horizontal direction (see figure). Compared with the confined compression device also the direct shear machine allows to analyze the time, shear speed and pore water pressure dependency during the tests.

Measurement procedure:

To determine the Mohr-Coulomb failure line at least 4-5 samples need to be tested each with a different normal stress. The maximum shear resistance (\boxtimes_{max}) is determined from a shear stress-displacement curve and plotted against the corresponding normal stress (\boxtimes_n). Plotting all pairs of \boxtimes_{max} versus \boxtimes_n gives the Mohr-Coulomb failure line in which the slope and intercept are the angle of internal friction (\boxtimes) and cohesion (*c*), respectively. soil stability against shear or tensile stresses is related to strength distribution in failure zones (Fig. 2). As it is true for the confined compression test device also the direct shear test can be carried out under well precompressed and completely drained (CD), or as consolidated undrained (CU) or as uncompressed and undrained (UU) conditions and can be furthermore affected by the shear speed and time of preloading. Thus, the boundary conditions can be defined very flexible according to the posed experimental questions.

Schematic diagram of shear strain curves and the derivation of the Mohr Coulomb failure line

Discussion of data:

In principle, soil structure will be stable if the applied stress is smaller than the strength of the failure zone, i.e., if the bond strength at the points of contact exceeds the shear or tensile stresses generated by external loads. If the resisting forces are smaller than the active forces stresses are in disequilibrium and hence soil deformation will occur to generate more contact points until stress equilibrium is reached again. Reorientation of particles is accompanied by a change of soil structure and consequently functions. In extreme stress situations (especially high shear stresses) or when soil is subject to mechanical loads in unfavorable moisture conditions (near the liquid limit) soil structure may be almost completely returned to an immature state (homogeneous soil). In contrast to shear stresses that lead to volume constant deformation, normal stresses result in volume change, i.e. compression which is plastic as soon as the soils stability is exceeded. In situ stress conditions during field operations (traffic, soil-tool interactions) are generally characterized by a combination of both shear and compressive stresses. For comparable grain size distribution, bulk density and pore water pressure, soil strength increases with aggregation (i.e., coherent < prismatic < blocky < subangular blocky < crumbly). In the case of a platy structure the strength depends on the direction of shear forces relative to the preferred orientation of the particles. In the direction of the elongated axes of aligned particles shear strength is lower than perpendicular to it.

Literature

Horn, R., H. Fleige 2009. Risk assessment of subsoil compaction for arable soils in Northwest Germany at farm scale. Soil and Tillage Res. 102, 201-208

Peth,S., Horn, R., Fazekas,O., Richards,B. 2006: Heavy soil loading and it consequences for soil structure, strength and deformation of arable soils. J.Plant Nutrition and Soil Science, 169, 775-783,

Vossbrink, J., R.Horn 2004. Modern forestry vehicles and their impact on soil physical properties. Eur.J.Forest Res. 123.259-267

Horn, R., Fleige, H. 2003. A method of assessing the impact of load on mechanical stability and on physical properties of soils. Soil Till.Res. 73, 89 – 100

Horn, R. and T. Baumgartl 1999: Dynamic Properties of Soils. In: Sumner (Hersg): Handbook of Soil Science, A19 – A 53, CRC Press.

Horn, R., J.J.H. van den Akker, J.Arvidsson 2000: Subsoil Compaction – Distribution, Processes and Consequences. Advances in Geoecology 32, ISBN 3-923381-44-1, 462 S

Eijkelkamp expresses thanks to the scientific contributions of Prof. R. Horn and J.Rostek

Appendix 2 Maintenance & service

Problem solving, tips and tricks

Q The software screen is not completely covering my monitor screen

A The screen resolution is fixed for compatibility reasons, full screen coverage can be obtained only by adjusting the screen resolution in Windows.

Q The instrument makes an internal sissing sound

A Check for the input air pressure, the maximum is 7 Bar and possibly the overpressure safety regulator is venting. Reduce the input pressure

Q The system makes a ticking noise and the maximum stress is not available.

A Make sure that the handle is in position operate, check for input pressure on the pressure regulator.

- Check handle for position Operate
- Check safety cap in position
- Check pressing the yellow reset button after opening the safety cap
- Check air pressure supply

Q Message safety monitor failure

- A The measured force is not within expected limits invoking a safety procedure:
- Check handle for position Operate
- Check safety cap in position
- Check pressing the yellow reset button after opening the safety cap
- Check air pressure supply

Press OK for removal	of the marcage	cloar the pre	blom and	roctart the test
1 1ess OK IOI Terrioval	of the massage,	clear the pro	Diemanu	lestait the test

Safety Monitor failure, Test Sto	pped.
Setpoint Pressure [kPa]: 200,00	
Measured Pressure [kPa]: 0,00	
min Safety Pressure [kPa]: 150,0	
max Safety Pressure [kPa]: 250,0	JU

- Q The maximum stress is not available.
- A check for input air pressure on the pressure regulator.

Q An instrument is not responding, indicating a red instrument selection button.

A Remove the instrument USB cable on the computer, if the error message appears confirm the OK button and reconnect the USB cable

volact	Test D		Currer I	d Date & Time: 42	11,2010 17:42:53	Dynamic Sh	ear insidement			Auto-Update
ne .	Dynamic The	×	Cycle	Tes		Vertical Stress			Sheer Speed	Sheer Strees
(pergine	Shari Date & Ti		H	(M. MYLAN)	(PM)	(69)	(nPM)	(mm)	(materia)	(KPM)
0	92-11-2048-1	198.32								
dational information										
veised File										
Landed		-								
1	-									
Continue Stat	Skip Cycle	Comment								
100 500 500 500 500 500 500 500 500 500									-	408 -50 308 -45 308 40 309 40 300 40 300 40 30 40 30 30 30 40 30 30 30 30 30 30 30 30 30 30 30 30 30
250		-				-		-		-100 2 -25
\$ 200		h	-							-290 2 - 29 2
-	-		-					-	-	-380 -15
g 150			_				_	-		480 -10
2 150 2 100										400 -8
150 100										144
80 0			100							0- 005

	ERROR	
An Error Occi	ured	
Date	Time	
02-11-2010	17:41:16	
Error code:		
1		
Error source: Instrument 2		
Error Descriptio	on:	
	connected from the computer. this message and re-connect the instrument.	

Q An instrument is not responding, due to disturbed internal electronic controller

A Check in manual control for analog values Remove the instrument USB cable on the computer , if the error message appears confirm the OK button then reconnect the USB cable.

Q The tensiometer is reacting slow.

A Check for air in the system, refill it. If it does not fix the problem replace the tensiometer assembly.

Calibration Maintenance and Service

Before measurements can be performed the instrument calibration must be checked bij the Manual control option and in case of inaccuracy performed using the Configuration, option instrument configuration.

By clicking the channel and calibrate sensor the individual calibration screens become available. If the calibration is unsuccessful the last known calibration can be restored.

Often only tensiometer and force sensors need justification in offset, this can be done in

It is strongly advised to copy the factory calibration for backup purposes.

			Calibration Date 04 - 12 - 2009					
hear		Ju	- 12 - 2009					
O Device Name								
II DAQ USB-6008 App5								
nsor Configuration	Output							
Channel Description	Ch No.	Channelname	Sensitivity	Offset				
/ertical Stress Control	A01	DAQ CH 01	0,01	0				
Shearmotor Speed	AOB	DAQ CH 00	1,25	2,5				
Shearmotor Enable	P0.0	DAQ CH 00						
Shearmotor Enable nsor Configuration Channel Description	P0.0 Input CH No.	Channel name	Sensitivity	Offset				
Shearmotor Enable nsor Configuration Channel Description /ertical Stress	P0.0	Channel name DAQ CH 01	Sensitivity 100	0				
Shearmotor Enable nsor Configuration Channel Description Vertical Stress Soilwatermatrix	P0.0 P0.0 CH No. Al1 Al3	Channel name DAQ CH 01 DAQ CH 03	Sensitivity 100 200	0 -1000				
Shearmotor Enable nsor Configuration Channel Description Vertical Stress Soilwatermatrix Compaction	P0.0	Channel name DAQ CH 01 DAQ CH 03 DAQ CH 00	Sensitivity 100 200 10	0				
Shearmotor Enable nsor Configuration Channel Description Vertical Stress Soilwatermatrix	P0.0 Input CH No. Al1 Al3 Al0	Channel name DAQ CH 01 DAQ CH 03	Sensitivity 100 200	0 -1000 0				
Shearmotor Enable nsor Configuration Channel Description Vertical Stress Soilwatermatrix Compaction	CH No. Al1 Al3 Al0 Al2	Channel name DAQ CH 01 DAQ CH 03 DAQ CH 03 DAQ CH 00 DAQ CH 02	Sensitivity 100 200 10	0 -1000 0				
Shearmotor Enable nsor Configuration Channel Description Vertical Stress Soilwatermatrix Compaction Shear Stress	CH No. Al1 Al3 Al0 Al2	Channel name DAQ CH 01 DAQ CH 03 DAQ CH 03 DAQ CH 00 DAQ CH 02	Sensitivity 100 200 10	0 -1000 0				
hearmotor Enable hsor Configuration hannel Description ertical Stress oilwatermatrix ompaction hear Stress cical Stress Contro	P0.0 P0.0 CH No. Al1 Al3 Al0 Al2 I PID Set	Channel name DAQ CH 01 DAQ CH 03 DAQ CH 03 DAQ CH 00 DAQ CH 02	Sensitivity 100 200 10 100	0 -1000 0 0				

Often only tensiometer or force sensors need justification in offset due to temperature fluctuation. This can be done using the zero button, inserting a zero offset for the sensor without changing the sensor calibration parameters.

Service interval schema

This interval schema based on regular use and are only as indication. Based on local conditions and experience the intervals can be altered.

٠	Sensors offset	1 week
٠	Remove condensate from air filters and compressor	1month
•	Ultrasonic cleaning sintered plates	3 months
•	Calibration check	3 months
٠	Recalibration	1 year
•	Ceramic assembly replacement	1 year
٠	Air filter check	1 year
٠	General maintenance**	3 year
	 Specifications check 	
	 Functionality check 	
	 Wear-out check, mechanical, pneumatic incl hoses 	, electric

- Recalibration against traceable standards
- o Repair

**Please consult Eijkelkamp for service contract proposals

Appendix 3 Software file structure

Program system files

The main program is located at drive C: Program Files\Eijkelkamp\Physical Soil Test\ PST.exe The User data is located at C:\soil Test Data

Other user specified location can be selected during installation of the software or using the menu Configuration, option File location setup

C:

🗁 Program Files

🗁 Eijkelkamp

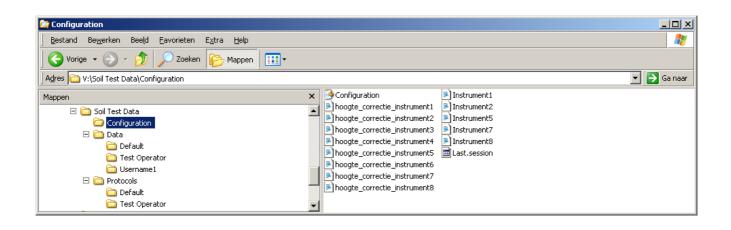
Physical Soil Test (executable PST.exe)

- Data (program specific filest)
- Help (user manual files pdf format)

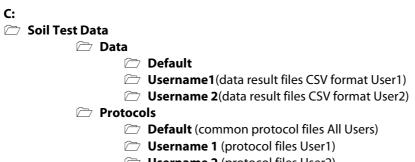
Data		_ _ _ ×
<u>B</u> estand Be <u>w</u> erken Bee <u>l</u> d <u>F</u> avorieten E <u>x</u> tra <u>H</u> elp		
🛛 🔆 Vorige 🔹 📀 - 🏂 🔎 Zoeken 🞼 Mappen 🔛 -		
🛛 Adres 🛅 V:\Program Files\Eijkelkamp\Physical Soil Test\Data		💌 🔁 Ga naar
Mappen	x 🔤 do not delete 💼 Soilwatermatrix	
🗆 🗀 Eijkelkamp	Settlement 📃 Vertical Stress	
🗆 🧰 Physical Soil Test	🔤 🔄 Shear Stress 🛛 🔊 Vertical Stress Cont	rol
Data Data		
Help	•	

🔄 Help	
Bestand Bewerken Beeld Eavorieten Extra Help	🥂 🖉
🛛 🌀 Vorige 👻 🛞 🖌 🏂 🔎 Zoeken 🞼 Mappen	
Adres 🛅 V:\Program Files\Eijkelkamp\Physical Soil Test\Help	🔽 🄁 Ga naar
Mappen	× 🔤 do not delete
🖃 🚞 Eijkelkamp	
🗆 🧰 Physical Soil Test	
🚞 Data	
🗁 Неір	

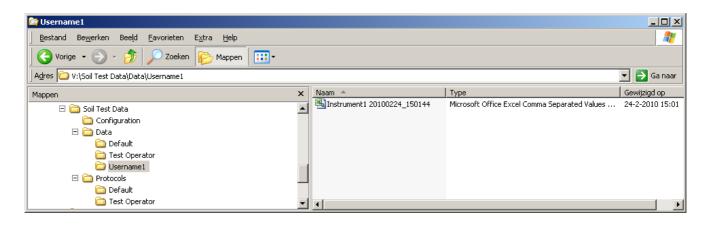
Program configuration files


Only the DATA Username files containing measurement result data in CSV format are of primary interest to the user. All configuration and protocol files are stored in text format, it is not recommended to edit these files by hand as the program user interface helps to prevent typing or other mistakes.

C:


🗁 Soil Test Data

Configuration


- Configuration (general settings file)
- Hoogte_correctie_instrumentx (instrument specific calibration file)
- Instrumentx (instrument specific calibration file)

Program data files

Username 2 (protocol files User2)

Data file format

The data files can be read into general spreadsheet programs. The file naming is based on instrument, date and time.

			Beel <u>d</u> Invoe					41 ₹1 1	100%	👩 🗋	Arial		• 10 •	BIU		-a- 💷		en vraag voor		
			3012														,00		_	
0	J30				T ♥ Antwoord	i mec wijzigir	gen <u>R</u> evisi	e beeindigen	· 🕞 : 🖾 I		※ ※1 ·	1· 4P =	A Y Y							
-			fx	-	-	-	-				14				-	-	-	-		1
	A	B	С	D	E	F	G	H		J	K	L	M	N	0	P	Q	R	S	
	Project		tionele teste	en															-	-
	Fest ID	Dyn. afsch	nuitapp.										-						-	-
	Dperator						-						-					-	-	-
	Additional		st Data\Prot		Maan Haan		for a basility of a second				1		-	-	-				-	-
		e 12:35:09		ocois\Han	svicop meen	en weer_	atschuitspar	ining_stopc	ond TUUKH	a_2.protoco			-							-
10	start time	12.35.05	3-11-2010																	-
1	Quele ID	Leen ID	Timestamp	Applied Ct	Vertical Ct	Calluster	Composi	Chaor Cao	Cheer Ctr	Commont									-	-
1	Jycle ID				-0,03346				1.055762											-
t	1				-0,03346				1,055762				-						-	-
ŀ	2				-0,03346					Applying S	ofotu Droo	0.000	-	-	-				-	-
ŀ	2				-0,03346				1,055762		alety Fles	sule		-	-					-
	2				-0,03548	-11,807			1,055762				-	-	-				-	-
	2				-0,01673				1,039131				-						-	-
	2				-0,01673				1,039131											-
	2			4		-11,7663			1,039131											+
	2				-0,01673				0,989238											+
	2				0,11711				0,972604											+
	2				0,619009				1.022499					-				-		+
	2				1,204557				1.089028									-	-	+
	2				1,773376				1,089028				-							+
2					2,342195				1,122289				-							+
- }	2				2,877554				1,172183											+
	2				3.429643		0,199097		1,188815											
	2				3.948271		0,234387		1,205447											-
t	2				4,45017				1,222078											+
	2				4.985529		0,306546		1.288604											
	2				5,353588		0,339729		1.338499											
t	2				5,353588		0,351317		1,355131											
I.	2				5,269938		0,355004		1,355131											
	2				5,203019		0,357637		1,355131											
t	2				5,136099		0,359217		1,338499	1										
3	2				5,102639		0,360798		1,338499											
t	2				5,052449		0,360798		1,355131											
	2				5,035719				1,355131											
	2				5,035719				1,371762											
	2				4,985529		0.362378		1,405028											
3	2				4,985529		0,361851		1,421657									1		
	2				4,968799		0.362378		1,405028											
t	2				4,952069		0.361324		1,405028											
t	2				4,935339		0,360798		1,405028											
t	2	2 1			4,918609		0,361851		1,405028											
t	2				4,901879				1,371762											
t	2				4,885149				1,388394											
	2				4,868419				1,405028											1
5	2				4,834959				1,405026											
t	2	2 1			4,834959				1,355131									1		
í.			0101103 12		· ·							•							-	Þ

Appendix 4 Conversion table Newton to kPa

Based on 98 mm diameter sintered plates.

Calculation	tabla	Mouton	 k Docool	

25 3,3 275 36,5 550 73,0 1050 139,3 1550 205,6 2050 271,9 2550 338,2 3050 40,6 3550 470,9 4050 537,2 4550 30 4,0 280 37,1 560 74,3 1060 140,6 1560 206,9 2060 273,2 2560 339,6 3060 405,9 3560 472,2 4060 538,5 4560 35 4,6 285 37,8 570 75,6 1070 141,9 1570 208,2 2070 274,6 2570 340,9 3070 407,2 3570 473,5 4070 539,8 471,2 4080 541,2 4580 45 6,0 295 39,1 590 78,3 1090 144,6 1590 210,9 277,2 2590 343,5 3090 406,5 3580 474,9 4080 541,2 4580 45 6,0 295 39,1 590 78,3 1090 144,6 1590 210,9 277,5	600,9 5030 667,2 602,2 5040 668,5 603,5 5050 669,8 604,8 5060 671,2 605,5 5080 673,5 607,5 5080 673,8 608,8 5090 675,1 611,5 5110 677,8 612,5 5130 680,4 615,5 5140 681,8 615,5 5140 681,1
15 2,0 265 35,1 530 70,3 1030 136,6 1530 202,9 2030 269,3 2530 335,6 3030 401,9 3530 468,2 4030 534,5 4530 20 2,7 270 35,8 540 71,6 1040 137,9 1540 204,3 2040 270,6 2540 336,9 3040 403,2 3540 469,5 4040 535,9 4560 25 3,3 275 36,5 550 73,0 1050 139,3 1550 206,0 271,9 2560 338,2 3050 404,6 3550 470,9 4050 537,2 4560 35 4,6 285 37,8 570 75,6 1070 141,9 1570 208,2 2070 274,6 2570 340,9 3070 407,2 3580 474,9 4080 541,2 4590 4550 450 4550 450 4550 450 4550 450 450 451,2 4500 451,2 4500 451,2 4500	600,9 5030 667,2 602,2 5040 668,5 603,5 5050 669,8 604,8 5060 671,2 605,5 5080 673,5 607,5 5080 673,8 608,8 5090 675,1 611,5 5110 677,8 612,5 5130 680,4 615,5 5140 681,8 615,5 5140 681,1
20 2,7 270 35,8 540 71,6 1040 137,9 1540 204,3 2040 270 36,9 3040 403,2 3540 469,5 4040 535,9 4540 25 3,3 275 36,5 550 73,0 1050 139,3 1550 205,0 271,9 2550 338,2 3060 405,9 3660 472,2 4060 538,5 4560 35 4,6 285 37,8 570 75,6 1070 141,9 1570 208,2 2070 274,6 2570 340,9 3070 407,2 3570 475,5 4070 539,8 4500 40 5,3 290 38,5 580 76,9 1080 143,3 1580 209,0 277,2 2590 343,5 3090 409,9 3070 476,2 4090 542,5 4590 450 6,6 309,9 8,00 79,6 100 145,9 1600 <td>602,2 5040 668,5 603,5 5050 669,8 604,8 5060 671,2 606,2 5070 672,5 607,5 5080 673,8 608,8 5090 675,1 610,1 5110 677,8 611,5 5120 679,1 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 616,8 5150 683,1</td>	602,2 5040 668,5 603,5 5050 669,8 604,8 5060 671,2 606,2 5070 672,5 607,5 5080 673,8 608,8 5090 675,1 610,1 5110 677,8 611,5 5120 679,1 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 616,8 5150 683,1
25 3,3 275 36,5 550 7,0 1050 139,3 1550 205,6 2050 271,9 2550 338,2 3050 40,6 3550 470,9 4050 537,2 4550 30 4,0 280 37,1 560 74,3 1060 140,6 1560 206,9 2060 273,2 2560 339,6 3060 405,9 3560 472,2 4060 538,5 4070 539,8 477,5 4070 539,8 477,5 4070 539,8 477,9 4080 541,2 450 40 5,3 290 38,5 580 76,9 1080 143,3 1580 209,6 277,2 2580 342,2 3080 408,5 5880 474,9 4080 541,2 450 45 6,0 295 39,1 590 78,3 1090 144,6 1590 210,2 2100 278,5 2600 344,9 3100 411,2 360 477,5 4100 542,5 450 450 450 450 450	603,5 5050 669,8 604,8 5060 671,2 606,2 5070 672,5 607,5 5080 673,8 608,8 5090 675,1 610,1 5100 676,5 611,5 5110 677,8 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 616,8 5150 683,1
30 4,0 280 37,1 560 74,3 1060 140,6 1560 2060 273,2 2560 339,6 3060 405,9 3560 472,2 4060 538,5 4560 35 4,6 285 37,8 570 75,6 1070 141,9 1570 208,2 2070 274,6 2570 340,9 3070 407,2 3570 473,5 4070 539,8 4570 40 5,3 290 38,5 580 76,9 1080 143,3 1580 209,6 208,2 275,9 2580 342,2 3080 408,5 3580 474,9 4080 541,2 4580 50 6,6 300 39,8 600 79,6 1000 144,6 1620 214,2 2100 278,5 2600 344,9 3100 411,6 540,48 410 543,8 4600 55 7,3 305 40,5 610 80,9 1144,6 </td <td>604,8 5060 671,2 606,2 5070 672,5 607,5 5080 673,8 608,8 5090 675,1 610,1 5100 676,5 611,5 5110 677,8 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 616,8 5150 683,1</td>	604,8 5060 671,2 606,2 5070 672,5 607,5 5080 673,8 608,8 5090 675,1 610,1 5100 676,5 611,5 5110 677,8 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 616,8 5150 683,1
35 4,6 285 37,8 570 75,6 1070 141,9 1570 208,2 2070 274,6 2570 340,9 3070 407,2 3570 473,5 4070 539,8 4570 40 5,3 290 38,5 580 76,9 1080 143,3 1580 209,6 2080 275,9 2580 342,2 3080 408,5 3580 474,9 4080 541,2 4580 45 6,0 295 39,1 590 78,3 1090 144,6 1590 210,9 209,0 277,2 2590 343,5 3000 409,9 3590 476,2 4000 542,5 4500 55 7,3 305 40,5 610 80,9 1110 147,2 1610 213,6 2110 279,9 2610 344,9 3100 411,2 3600 478,8 4110 545,2 4610 462 410 54,2 4610 462 347,5 310 415,2 360 480,2 4120 546,4 4620 46162	606,2 5070 672,5 607,5 5080 673,8 608,8 5090 675,1 611,1 5100 676,5 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 616,8 5150 683,1
40 5,3 290 38,5 580 76,9 1080 143,3 1580 209,6 2080 275,9 2580 342,2 3080 408,5 3580 474,9 4080 541,2 4580 45 6,0 295 39,1 590 78,3 1090 144,6 1590 210,9 2090 277,2 2590 343,5 3090 409,9 3590 476,2 4090 542,5 4500 50 6,6 300 39,8 600 79,6 1100 145,9 1600 212,2 2100 278,5 2600 344,9 3100 411,2 3600 477,5 4100 543,8 4600 60 8,0 310 41,1 620 82,2 1120 148,6 1620 214,9 2120 281,2 2620 347,5 3120 413,8 3600 480,2 4110 545,2 4600 462 4140 549,1 4600 462 460 462 460 462 460 462 460 462 460	607,5 5080 673,8 608,8 5090 675,1 610,1 5100 676,5 611,5 5110 677,8 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 615,8 5150 683,1
45 6,0 295 39,1 590 78,3 1090 144,6 1590 210,9 2090 277,2 2590 343,5 3090 409,9 3590 476,2 4090 542,5 4590 50 6,6 300 39,8 600 79,6 1100 145,9 1600 212,2 2100 278,5 2600 344,9 3100 411,2 3600 477,5 4100 543,8 4600 55 7,3 305 40,5 610 80,9 1110 147,2 1610 213,6 211,0 279,9 2610 346,2 3110 412,5 3610 47,8 4110 545,2 4600 60 8,0 310 41,1 620 82,2 1120 148,6 1620 214,9 212,2 282,5 2630 348,8 3130 415,2 3630 481,5 4130 547,8 4602 70 9,3 320 42,4 640 84,9 1140 151,2 1640 217,5 2140 283,9 2660	608,8 5090 675,1 610,1 5100 676,5 611,5 5110 677,8 612,8 5120 679,1 614,1 5130 680,4 615,5 5140 681,8 616,8 5150 683,1
50 6,6 300 39,8 600 79,6 1100 145,9 1600 212,2 2100 278,5 2600 344,9 3100 411,2 3600 477,5 4100 543,8 4600 55 7,3 305 40,5 610 80,9 1110 147,2 1610 213,6 2110 279,9 2610 346,2 3110 412,5 3610 478,8 4110 545,2 4610 60 8,0 310 41,1 620 82,2 1120 148,6 1620 214,9 2120 281,2 2620 347,5 3120 413,8 3620 480,2 4120 546,5 4620 65 8,6 315 41,8 630 83,6 1130 149,9 1630 216,2 2130 282,5 2630 348,8 3130 415,2 3640 482,8 4140 549,1 4600 70 9,3 325 43,1 650 <td>610,15100676,5611,55110677,8612,85120679,1614,15130680,4615,55140681,8616,85150683,1</td>	610,15100676,5611,55110677,8612,85120679,1614,15130680,4615,55140681,8616,85150683,1
55 7,3 305 40,5 610 80,9 1110 147,2 1610 213,6 2110 279,9 2610 346,2 3110 412,5 3610 478,8 4110 545,2 4610 60 8,0 310 41,1 620 82,2 1120 148,6 1620 214,9 2120 281,2 2620 347,5 3120 413,8 3620 480,2 4120 546,5 4620 65 8,6 315 41,8 630 83,6 1130 149,9 1630 216,2 2130 282,5 2630 348,8 3130 415,2 3640 482,8 4140 549,1 4640 70 9,3 320 42,4 640 84,9 1140 151,2 1640 217,5 2140 283,9 2660 351,5 3150 417,8 3650 484,1 4150 550,5 4660 75 9,9 325 43,1 660 87,5 1160 153,9 1660 220,2 2180 2160 351,5	611,55110677,8612,85120679,1614,15130680,4615,55140681,8616,85150683,1
60 8,0 310 41,1 620 82,2 1120 148,6 1620 214,9 2120 281,2 2620 347,5 3120 413,8 3620 480,2 4120 546,5 4620 65 8,6 315 41,8 630 83,6 1130 149,9 1630 216,2 2130 282,5 2630 348,8 3130 415,2 3630 481,5 4130 547,8 4630 70 9,3 320 42,4 640 84,9 1140 151,2 1640 217,5 2140 283,9 2640 350,2 3140 416,5 3640 482,8 4140 549,1 4640 75 9,9 325 43,1 650 86,2 1150 152,5 1650 218,9 2150 285,2 2650 351,5 3150 417,8 3650 484,1 4150 550,5 4660 80 10,6 330 43,8 660 87,5 1160 153,9 1660 220,2 2160 286,5 2660	612,85120679,1614,15130680,4615,55140681,8616,85150683,1
65 8,6 315 41,8 630 83,6 1130 149,9 1630 216,2 2130 282,5 2630 348,8 3130 415,2 3630 481,5 4130 547,8 4630 70 9,3 320 42,4 640 84,9 1140 151,2 1640 217,5 2140 283,9 2640 350,2 3140 416,5 3640 482,8 4140 549,1 4640 75 9,9 325 43,1 650 86,2 1150 152,5 1650 218,9 2150 285,2 2650 351,5 3150 417,8 3650 484,1 4150 550,5 4650 80 10,6 330 43,8 660 87,5 1160 153,9 1660 220,2 210 286,5 2660 352,8 3160 419,1 3660 485,1 4160 551,8 4660 85 11,3 35 44,4 670 88,9 1170 155,5 1680 222,8 2170 287,8 2670	614,15130680,4615,55140681,8616,85150683,1
70 9,3 320 42,4 640 84,9 1140 151,2 1640 217,5 2140 283,9 2640 350,2 3140 416,5 3640 482,8 4140 549,1 4640 75 9,9 325 43,1 650 86,2 1150 152,5 1650 218,9 2150 285,2 2650 351,5 3150 417,8 3650 484,1 4150 550,5 4650 80 10,6 330 43,8 660 87,5 1160 153,9 1660 220,2 2170 287,8 2670 352,8 3160 419,1 3660 485,5 4160 551,8 4660 85 11,3 335 44,4 670 88,9 1170 155,2 1670 221,5 2170 287,8 2670 354,2 3170 420,5 3670 488,1 4180 554,4 4680 90 11,9 340 45,8 690<	615,5 5140 681,8 616,8 5150 683,1
75 9,9 325 43,1 650 86,2 1150 152,5 1650 218,9 2150 285,2 2650 351,5 3150 417,8 3650 484,1 4150 550,5 4650 80 10,6 330 43,8 660 87,5 1160 153,9 1660 220,2 2160 286,5 2660 352,8 3160 419,1 3660 485,5 4160 551,8 4660 85 11,3 335 44,4 670 88,9 1170 155,2 1670 221,5 2170 287,8 2670 354,2 3170 420,5 3670 486,8 4170 553,1 4670 90 11,9 340 45,1 680 90,2 1180 156,5 1680 222,8 2180 289,2 2680 355,5 3180 421,8 3680 488,1 4180 554,4 4680 95 12,6 345 45,8 690 91,5 1190 157,8 1690 224,2 2190 290,5 2690	616,8 5150 683,1
80 10,6 330 43,8 660 87,5 1160 153,9 1660 220,2 2160 286,5 2660 352,8 3160 419,1 3660 485,5 4160 551,8 4660 85 11,3 335 44,4 670 88,9 1170 155,2 1670 221,5 2170 287,8 2670 354,2 3170 420,5 3670 486,8 4170 553,1 4670 90 11,9 340 45,1 680 90,2 1180 156,5 1680 222,8 2180 289,2 2680 355,5 3180 421,8 3680 488,1 4180 554,4 4680 95 12,6 345 45,8 690 91,5 1190 157,8 1690 224,2 2190 290,5 2690 356,8 3190 423,1 3690 489,4 4190 555,8 4690 100 13,3 350 46,4 7	
85 11,3 335 44,4 670 88,9 1170 155,2 1670 221,5 2170 287,8 2670 354,2 3170 420,5 3670 486,8 4170 553,1 4670 90 11,9 340 45,1 680 90,2 1180 156,5 1680 222,8 2180 289,2 2680 355,5 3180 421,8 3680 488,1 4180 554,4 4680 95 12,6 345 45,8 690 91,5 1190 157,8 1690 224,2 2190 290,5 2690 356,8 3190 423,1 3690 489,4 4190 555,8 4690 100 13,3 350 46,4 700 92,8 1200 159,2 1700 225,5 2200 291,8 2700 358,1 3200 424,5 3700 490,8 4200 57,1 4700	
90 11,9 340 45,1 680 90,2 1180 156,5 1680 222,8 2180 289,2 2680 355,5 3180 421,8 3680 488,1 4180 554,4 4680 95 12,6 345 45,8 690 91,5 1190 157,8 1690 224,2 2190 290,5 2690 356,8 3190 423,1 3690 489,4 4190 555,8 4690 100 13,3 350 46,4 700 92,8 1200 159,2 1700 225,5 2200 291,8 2700 358,1 3200 424,5 3700 490,8 4200 57,1 4700	
95 12,6 345 45,8 690 91,5 1190 157,8 1690 224,2 2190 290,5 2690 356,8 3190 423,1 3690 489,4 4190 555,8 4690 100 13,3 350 46,4 700 92,8 1200 159,2 1700 225,5 2200 291,8 2700 358,1 3200 424,5 3700 490,8 4200 557,1 4700 100 100 100 100 100 100 100 100 100	
100 13,3 350 46,4 700 92,8 1200 159,2 1700 225,5 2200 291,8 2700 358,1 3200 424,5 3700 490,8 4200 557,1 4700	
110 14.6 360 47.8 720 95.5 1220 161.8 1720 228.1 2220 294.5 2720 360.8 3220 427.1 3720 493.4 4220 559.7 4720	
110 14,8 360 47,8 720 95,5 1220 161,8 1720 228,1 2220 294,5 2720 360,6 3220 427,1 3720 493,4 4220 359,7 4720 115 15,3 365 48,4 730 96,8 1230 163,1 1730 229,5 2230 295,8 2730 362,1 3230 428,4 3730 494,8 4230 561,1 4730	
120 15,9 370 49,1 740 98,2 1240 164,5 1740 230,8 2240 297,1 2740 363,4 3240 429,8 3740 496,1 4240 562,4 4740	
125 16,6 375 49,7 750 99,5 1250 165,8 1750 232,1 2250 298,4 2750 364,8 3250 431,1 3750 497,4 4250 563,7 4750	
130 17.2 380 50.4 760 10.8 1260 167.1 1760 233.4 2260 299.8 2760 366.1 3260 432.4 3760 498.7 4260 565.1 4760	
	632,7 5270 699,0
140 18,6 390 51,7 780 103,5 1280 169,8 1780 236,1 2280 302,4 2780 368,7 3280 435,1 3780 501,4 4280 567,7 4780	
145 19.2 395 52.4 790 104.8 1290 171.1 1790 237.4 2290 303.7 2790 370.1 3290 436.4 3790 502.7 4290 569.0 4790	
150 19.9 400 53,1 800 106,1 1300 172,4 1800 238,8 2300 305,1 2800 371,4 3300 437,7 3800 504,0 4300 570,4 4800	,
	638,0 5310 704,3
160 21,2 410 54,4 820 108,8 1320 175,1 1820 241,4 2320 307,7 2820 374,0 3320 440,4 3820 506,7 4320 573,0 4820	
165 21,9 415 55,0 830 110,1 1330 176,4 1830 242,7 2330 309,1 2830 375,4 3330 441,7 3830 508,0 4330 574,3 4830	
170 22.5 420 55.7 840 111.4 1340 177.7 1840 244.1 2340 310.4 2840 376.7 3340 443.0 3840 509.3 4340 575.7 4840	642,0 5340 708,3
175 23,2 425 56,4 850 112,7 1350 179,1 1850 245,4 2350 311,7 2850 378,0 3350 444,3 3850 510,7 4350 577,0 4850	643,3 5350 709,6
180 23,9 430 57,0 860 114,1 1360 180,4 1860 246,7 2360 313,0 2860 379,4 3360 445,7 3860 512,0 4360 578,3 4860	644,6 5360 711,0
185 24,5 435 57,7 870 115,4 1370 181,7 1870 248,0 2370 314,4 2870 380,7 3370 447,0 3870 513,3 4370 579,6 4870	646,0 5370 712,3
190 25,2 440 58,4 880 116,7 1380 183,0 1880 249,4 2380 315,7 2880 382,0 3380 448,3 3880 514,6 4380 581,0 4880	647,3 5380 713,6
195 25,9 445 59,0 890 118,1 1390 184,4 1890 250,7 2390 317,0 2890 383,3 3390 449,7 3890 516,0 4390 582,3 4890	648,6 5390 714,9
200 26,5 450 59,7 900 119,4 1400 185,7 1900 252,0 2400 318,3 2900 384,7 3400 451,0 3900 517,3 4400 583,6 4900	649,9 5400 716,3
205 27,2 455 60,4 910 120,7 1410 187,0 1910 253,3 2410 319,7 2910 386,0 3410 452,3 3910 518,6 4410 584,9 4910	651,3 5410 717,6
210 27,9 460 61,0 920 122,0 1420 188,4 1920 254,7 2420 321,0 2920 387,3 3420 453,6 3920 520,0 4420 586,3 4920	652,6 5420 718,9
215 28,5 465 61,7 930 123,4 1430 189,7 1930 256,0 2430 322,3 2930 388,6 3430 455,0 3930 521,3 4430 587,6 4930	653,9 5430 720,2
220 29,2 470 62,3 940 124,7 1440 191,0 1940 257,3 2440 323,6 2940 390,0 3440 456,3 3940 522,6 4440 588,9 4940	655,2 5440 721,6
225 29,8 475 63,0 950 126,0 1450 192,3 1950 258,7 2450 325,0 2950 391,3 3450 457,6 3950 523,9 4450 590,3 4950	656,6 5450 722,9
230 30,5 480 63,7 960 127,3 1460 193,7 1960 260,0 2460 326,3 2960 392,6 3460 458,9 3960 525,3 4460 591,6 4960	
235 31,2 485 64,3 970 128,7 1470 195,0 1970 261,3 2470 327,6 2970 393,9 3470 460,3 3970 526,6 4470 592,9 4970	
240 31,8 490 65,0 980 130,0 1480 196,3 1980 262,6 2480 328,9 2980 395,3 3480 461,6 3980 527,9 4480 594,2 4980	
245 32,5 495 65,7 990 131,3 1490 197,6 1990 264,0 2490 330,3 2990 396,6 3490 462,9 3990 529,2 4490 595,6 4990	
250 33,2 500 66,3 1000 132,6 1500 199,0 2000 265,3 2500 331,6 3000 397,9 3500 464,2 4000 530,6 4500 596,9 5000	663,2 5500 729,5

Appendix 5 CE declaration of conformity

The undersigned, representing the manufacturer:

Eijkelkamp Agrisearch Equipment BV

Nijverheidsstraat 30 6987 EM Giesbeek The Netherlands

Herewith declare that the products:

Type: Compression Test Apparatus

Art.nr.:08.67 Function: Measuring soil compression strength and simultaneous measuring of soil suction and displacement

And

Type: Shear Strength Test Apparatus

Art.nr.:08.68

Function: Measuring soil shear strength under compression and simultaneous measuring of soil suction and displacement

is in conformity with the essential requirements of the following EC Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

2006/42/EC Machinery Directive 2004/108/EC EMC Directive

2002/96/EC Waste Electrical and Electronic Equipment (WEEE) 2002/95/EC RoHS Directive

and that the standards and/or technical specifications referenced below have been applied:

NEN-EN-ISO12100-1: 2003 Safety of machinery – Basic concepts, general principles for design – Part 1&2 NEN-EN 983: 1996+A1:2008 Safety of machinery: Pneumatics

EN 61000-6-1- Generic immunity standard EN 61000-6-2- Generic emission standard

Giesbeek, 1-August-2010

Manufacturer:

Signature

> DE CUE

Fons Eijsink General Manager